
Carpe Diem: Can daily oil prices improve model-based forecasts of

the real price of crude oil?∗

Amor Aniss Benmoussa† Reinhard Ellwanger‡ Stephen Snudden§¶

March 28, 2023

Abstract
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1 Introduction

The real price of crude oil is a key global macroeconomic indicator that has attracted considerable

attention among forecasters. A growing literature documents that a variety of different model-based

forecasts of the monthly real price of oil outperform a simple monthly average no-change forecast

(see, e.g. Ye et al., 2005; Baumeister and Kilian, 2012; Alquist et al., 2013; Baumeister et al.,

2014; Baumeister and Kilian, 2014, 2015; Wang et al., 2015; Yin and Yang, 2016; Snudden, 2018;

Zhang et al., 2018; Funk, 2018; Garratt et al., 2019; Alquist et al., 2020; Baumeister et al., 2022). A

common feature of these studies is that they all rely on a price of crude oil that represents a monthly

average over daily prices. This form of temporal aggregation is convenient because it facilitates

the inclusion of monthly predictor variables and the construction of historical prices (Alquist et al.,

2013).1 However, time-averaging also introduces a loss of information and is generally inefficient

from a forecasting perspective (see, e.g., Wei, 1978; Kohn, 1982; Lütkepohl, 1986; Marcellino, 1999).

Although it remains an empirical question whether estimated models for the disaggregated series

fare better in practice (Lütkepohl, 1984), there is thus far no study that exploits the underlying

daily oil prices for forecasting models of the real price of crude oil.

The goal of this paper is to explore alternative disaggregated approaches that incorporate daily

oil prices into model-based forecasts of the monthly average real price of crude oil. The first exercise

examines the forecast performance of the random walk forecast based on the last closing price

relative to no-change forecasts computed from averaged data. The second exercise compares the

relative effectiveness of two different dissaggregated approaches for univariate time-series models.

This includes Lütkepohl (1984)’s approach of estimating models for daily oil prices and aggregating

the daily forecasts to the monthly frequency ex-post. We also consider forecasts via period-end price

sampling (PEPS), which estimates monthly models for end-of-month real prices and uses forecasts

of the end-of-month price as the forecast of the monthly average price (Ellwanger and Snudden,

2021). The third exercise evaluates the performance of mixed frequency (MIDAS) forecasts that use

daily oil prices for direct forecasts of the monthly real price of oil. The fourth exercise incorporates

information from daily oil prices into direct forecasts with predictor variables, while the fifth exercise

extends the PEPS approach to vector autoregression (VAR) models. Together, these exercises

provide a systematic assessment over how daily oil prices can be utilized in model-based forecasts

1Structural models and forecasting approaches using pre-1980es data typically rely on historical refinery acquisition
costs of crude oil, which are only available at the monthly frequency (Kilian, 2009; Alquist et al., 2013; Kilian and
Murphy, 2014; Baumeister and Hamilton, 2019).
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of the monthly average real price of oil.

Our key result is that irrespective of the approach, forecasting models that utilize information

from daily prices are considerably more effective than standard models estimated with monthly

average prices. Across several distinct forecast approaches that rely on daily prices, we obtain

robust accuracy-improvements of the order of 40% at the one-month horizon. Moreover, forecasts

based on daily data exhibit improvements in the success ratio for directional accuracy relative to

models estimated with average data as far as 24 months ahead.

An additional insight from our exercises is that much of the benefit from using daily oil prices

stems from the information contained in the last available daily price. For example, we find that

in most cases, MIDAS regressions attribute the entire forecasting weight on the end-of-month price

and zero weight on any other daily prices. As a consequence, forecasting models relying on monthly

rather than daily data provide effective forecasts as long as they incorporate information from end-

of-month prices rather than monthly average prices. This helps explain why the PEPS approach,

which allows forecasters to maintain the monthly frequency for all model variables, fairs well across

a wide variety of model-based applications.

A practical advantage of PEPS is that it can also be applied to forecasts of U.S. refinery

acquisition cost of crude oil (RAC), which is often used in lieu of other crude oil prices because

of its longer history (see, e.g., Alquist et al., 2013). Using disaggregated methods for the RAC is

complicated by the fact that the RAC is published as a monthly survey. To circumvent the lack of

daily data, we impute end-of-month RAC observations from WTI prices and estimate models using

the PEPS approach with the imputed data. This approach is easy to implement for both ex-post

and real-time data and yields large forecast gains over traditional forecasts, with over 30 percent

improvements in the MSFE for real-time forecasts at the one-month-ahead horizon. Large forecast

improvements are also obtained by estimating the multivariate VAR model of Kilian and Murphy

(2014) via PEPS instead of the standard monthly average oil price.

The use of daily oil prices can resuscitate the benefits of some model-based forecasts over

naive forecast at short horizons. This is nontrivial because at the one-month ahead prediction, all

existing forecasting models estimated with monthly average data perform worse than the random

walk forecast based on the last available closing price (Ellwanger and Snudden, 2022). By contrast,

models that incorporate information from daily prices sometimes outperform the random walk at

this horizon, albeit by a smaller margin than implied by comparisons with the monthly average

no-change forecast.
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Although the idea to utilize the underlying daily oil-price data in forecasts of the monthly real

price of oil is new, our results are consistent with several distinct pieces of evidence provided in

earlier studies. For example, Ellwanger and Snudden (2023) have recently shown that using end-of-

month oil futures prices instead of monthly average oil futures prices yields large forecasting gains

for futures-based forecasts of the real price of crude oil. Baumeister and Kilian (2014) document

that the monthly average no-change forecasts performs better than the quarterly average no-change

forecast. Baumeister and Kilian (2012) show that most forecasting gains from using revised data

stem from improved information on prices, while Bork et al. (2022) and Conlon et al. (2022)

document that averaging commodity prices can introduce spurious predictability in the context of

return-forecasting regressions. These results are all indicative that time-averaging introduces a loss

of information about future oil prices. Herein, we show that the introduction of information from

daily prices into model-based forecasts can help to restore this information.

2 Forecast Methodology and Data

The focus of our empirical application is real-time forecasts of the level of the monthly average real

price of crude oil, which is the standard approach in the literature (Baumeister and Kilian, 2012;

Alquist et al., 2013). In this setting, the forecaster uses the available information at the end of

each month to form their prediction for the following months. The goal is to forecast the average

real price, Rt,a = pt,a/CPIt, where Rt stands for the real price on month t, pt,a stands for the

nominal average price, and CPIt is the U.S. consumer price index. We study forecasts of the three

most common oil-price benchmarks in the literature: West Texas Intermediate (WTI), Brent, and

US refiner acquisition cost of crude oil, imported (RAC). For WTI and Brent, pt,a is the monthly

average of daily nominal closing prices, whereas the RAC is a monthly survey price.

All forecasts are computed in real time and evaluated out-of-sample with an expanding win-

dow beginning in 1992M1. Unless otherwise indicated, the evaluation window ends in 2021M1.

Throughout the paper, we follow existing practices and report MSFE ratios relative to that of the

conventional monthly average no-change forecast, along with the p-values for the null hypothesis

of equal predictability following Diebold and Mariano (1995).2 Similarly, we report success ratios

for the direction of the change in the monthly average price along with the test of Pesaran and

2The use of real-time data and the iterative out-of-sample forecasts does not fulfill the assumptions underlying
the Diebold-Mariano test (Kilian, 2015). As in many pre-existing studies, the p-values are still reported with this
warning in mind for those forecasts.
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Timmermann (2009). Reporting these statistics facilitates the comparison with results from the

existing literature.

Additionally, our tables indicate statistically significant improvements over the random walk

forecast. The random walk forecast is the no-change forecast based on the last observed closing

price contained in the forecaster’s information set: Rx
t,n = pxt,n/CPIt where n denotes the last day

of month t.3 While assessing improvements in terms of the MSFE-accuracy relative to the random

walk forecast is straightforward, the assessment of the success ratio for directional accuracy contains

an important subtlety. To test whether a particular model outperforms the random walk in terms of

directional accuracy, the direction of the forecast is computed as the difference between the model-

implied forecast and the random walk forecast, Rx
t,n. Unlike the MSFE ratios, the success ratios

are not transitive across the comparison against the different no-change forecasts. For example,

the forecast with the highest success ratio for the direction of the change relative to the monthly

average price is not necessarily the forecast with the highest success ratio for the direction of the

change relative to the last observed closing price.

Crude oil prices are obtained from the U.S. Energy Information Administration (EIA). For Brent

and WTI, the EIA reports the average monthly price as simple averages of the daily closing price.

Both average and daily prices for these series are available in real time. Implementing forecast

approaches relying on disaggregated data for the RAC is complicated by the fact that daily RAC

data does not exist. For our empirical analysis, we impute end-of-period RAC observations by

applying the growth rate of the end-of-month WTI oil price over the monthly average WTI oil

price to the monthly RAC price: pRAC
t,n = pRAC

t,a · (pWTI
t,n /pWTI

t,a ), where pt,n refers to the nominal

closing price on the last day of the month and superscripts RAC and WTI denote the nominal

RAC series and nominal WTI prices, respectively. The idea to impute RAC observations with

WTI prices has ample precedent in the oil-price forecasting literature. For example, it is standard

to nowcast the average nominal RAC via the growth rate of WTI prices and to replace missing

RAC futures prices with WTI futures prices (Baumeister and Kilian, 2012). Although the RAC

technically differs from the price of WTI, the tight empirical correlation between the series implies

that this imputation works well for forecasting. Our empirical results show that this applies not

only to monthly averages, but also to end-of-period observations.

3The no-change forecast based on the last observed instantaneous price is the optimal no-change forecast of the
monthly average data under the null hypothesis that all future prices are unpredictable (Working, 1960). As such,
predictability in the traditional sense can only be established for with the random walk forecast based on closing
prices, even for real prices (Ellwanger and Snudden, 2022)
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Nominal prices are converted to real prices using the seasonally adjusted U.S. consumer price

index. The price index is the seasonally adjusted U.S. consumer price index obtained from the

FRASER database of the Federal Reserve Bank of St. Louis and the real-time database of the

Philadelphia Federal Reserve.

Our exercises also present forecasts from the Kilian and Murphy (2014) VAR model, which

includes oil prices, the growth rate of global crude oil production, a proxy for the change in global

crude oil inventories, and an indicator of real economic activity. An additional contribution of

this paper is to extend the real-time data of Baumeister and Kilian (2012) using historical data

vintages from the EIA’s Monthly Energy Review and Short-Term Energy Outlook. Unlike earlier

updates of this dataset provided in Garratt et al. (2019), we were able to collect all monthly vintages

after 2010M12, which means this is the first update to include all revisions for the entire history

of each vintage.4 Real-time data vintages start in 1991M12 and contain historical data starting

from 1973M1. Real-time data on U.S. crude-oil inventories, U.S. petroleum inventories and OECD

petroleum inventories are obtained from historical releases in the EIA’s Monthly Energy Review

or the International Data Browser. The real-time version of Kilian (2009)’s real economic activity

index is computed using the corrected formula (Kilian, 2019).

All nowcasts follow Baumeister and Kilian (2012). For example, the monthly average RAC is

nowcasted using the month-over-month growth rate of the monthly WTI series. Any missing real-

time observations for the consumer price index are nowcasted using the average historical growth

rate. To nowcast the imputed end-of-period observations for the RAC, we use the historical vintage

of the nowcasted RAC prices at the time of the forecast. As discussed in Section 4, none of the

main results are affected by different nowcasting choices.

The series of daily and monthly WTI and Brent prices provided by the EIA begin in 1986M1

and 1987M5, respectively. Estimation for models estimated at the daily frequency begin on those

dates. For forecasting models estimated at the monthly frequency, including models estimated via

PEPS, prices are backcasted to 1973M1. Specifically, monthly average and end-of-month prices

for WTI and Brent are backcasted to 1983M4 using the growth rate of the monthly average and

end-of-month price of the front WTI futures contract, respectively. Then, following the standard

practice, all monthly average prices before 1983M4 are backcasted using the growth rate of the

monthly average RAC. For the backcast of end-of-month prices before 1984M4, we apply the same

growth rate to the last available end-of-month observation rather than the last observed monthly

4See Appendix A1 for details.
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average observation. None of these backcasting choices are crucial for our results, as our main

findings are robust to estimating models with data starting in 1983 or 1986.

3 Forecasting the Real Price of Crude Oil with Disaggregated Oil

Prices

3.1 No-Change Forecasts

This section compares the relative performance of no-change forecasts that are averaged at different

frequencies. To compute no-change forecasts for the h-months-ahead real price of crude, Rt+h,a,

backward averages of nominal daily prices in period t are deflated by the monthly CPI,

R̂t+h,a =
1
s

∑n
j=n−s+1 pt,j

CPIt
, (1)

where pt,i refers to the nominal price on day i of month t, n indicates the number of total days

in month t, and s indicates the number of end-of-month daily observations that are used for the

average. Ellwanger and Snudden (2022) show that the random walk forecast, s = 1, is a more

effective predictor of the monthly average real price of crude oil than the conventional monthly

average no-change forecast, s = n. The first three columns of Table 1 replicate this result and

report the MSFEs and success ratios for the random-walk forecasts relative to the monthly average

no-change forecasts. The random-walk forecasts are significantly more accurate than the monthly

average no-change forecasts, with accuracy-improvements of over 40 percent for Brent and WTI

at the one-month-ahead-horizon. The gains decrease as the forecasting horizon increases, but they

never vanish completely and are still statistically significant at the 5 percent significance level for

up to 24-month-ahead forecasts. Similar results are obtained for the random walk forecast of the

RAC, which relies on the imputed end-of-month price. The forecast gains are stable across the

forecast evaluation sample (Ellwanger and Snudden, 2022).

We now examine whether shorter averages over daily data provides additional gains in the

performance of the end-of-period no-change forecasts. Price-averaging could be potentially useful if

the daily series is affected by random noise, which could arise from measurement errors or market-

microstructure dynamics. Table 1 reports the no-change forecasts that are computed from averaging

daily closing prices over the last two trading days, s = 2, the last week of trading, s = 5, and the

last two weeks of trading before the end of the month, s = 10, for the case of the real price of
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Table 1. Alternative No-Change Forecasts of the Real Price of Crude Oil

Price Brent WTI RAC WTI WTI WTI

Sampling EoM EoM WTI EoM EoM 2 Day 
Avg.

EoM 1 
Week Avg.

EoM 2 
Week Avg.

Horizon
1 0.58 (0.000) 0.59 (0.000) 0.70 (0.001) 0.60 (0.000) 0.67 (0.000) 0.78 (0.001)
3 0.92 (0.017) 0.89 (0.012) 0.89 (0.010) 0.89 (0.017) 0.92 (0.025) 0.95 (0.071)
6 0.98 (0.123) 0.95 (0.029) 0.95 (0.027) 0.96 (0.044) 0.98 (0.155) 0.99 (0.297)

12 0.98 (0.170) 0.96 (0.028) 0.96 (0.018) 0.98 (0.116) 1.00 (0.473) 1.01 (0.714)
24 1.00 (0.443) 0.99 (0.189) 0.98 (0.123) 1.00 (0.440) 1.01 (0.838) 1.01 (0.936)

1 0.72 (0.000) 0.71 (0.000) 0.71 (0.000) 0.70 (0.000) 0.70 (0.000) 0.67 (0.000)
3 0.57 (0.005) 0.61 (0.000) 0.61 (0.000) 0.61 (0.000) 0.59 (0.000) 0.57 (0.006)
6 0.56 (0.013) 0.55 (0.057) 0.58 (0.006) 0.56 (0.039) 0.55 (0.043) 0.55 (0.047)

12 0.59 (0.000) 0.57 (0.007) 0.57 (0.009) 0.58 (0.003) 0.56 (0.017) 0.52 (0.322)
24 0.56 (0.015) 0.52 (0.292) 0.54 (0.153) 0.51 (0.415) 0.49 (0.737) 0.47 (0.880)

MSFE Ratio

 Success Ratio

Notes: Forecast performance of alternative no-change forecasts relative to the monthly average no-change
forecasts for alternative crude oil price series, 1992M1–2021M1. EoM stands for end-of-month observations,
Avg. stands for averages. Brackets report the p-values for serial dependence robust tests of Pesaran and
Timmermann (2009) for the null of no directional accuracy and Diebold and Mariano (1995) for equal MSFEs
relative to the monthly average no-change forecast.

WTI crude oil. Very similar results are obtained for the real price of Brent crude oil. These results

indicate that there is no benefit from averaging, as the no-change forecasts tend to perform more

poorly as the length of the averaging window increases. This shows that, for forecasting the real

price of crude oil, the informational benefits from using end-of-month prices clearly outweigh the

concerns over increasing the volatility relative to average prices.5

Table 1 highlights that even the simplest possible forecast that relies on disaggregated data yields

accuracy-gains over the conventional monthly average no-change forecast used in the literature. The

magnitude of these gains is impressive, in particular for short forecast horizons. If fact, as shown in

Ellwanger and Snudden (2022), all existing forecast models relying on monthly average data have

higher MSFEs than the random walk forecast at the one-step-ahead prediction. One goal of this

paper is to examine whether model-based forecasts that rely on disaggregated prices can improve

upon the random walk forecast at this horizon.

5The empirical variances of the monthly closing prices of crude oil are statistically indistinguishable from the
variances of the monthly average prices of crude oil (see Appendix A1). This suggests that the improvements from
using closing prices is driven by a smaller bias.

7



3.2 ARIMA Forecasts

This section compares the forecast performance of two different forecast approaches that incorporate

disaggregated data in the context of autoregressive-moving-average (ARMA) models (Box et al.,

2015). These univariate time-series models are a regular feature of forecasting exercises and are

often found to be more accurate predictors of the real price of crude oil than the conventional

average-price no-change forecast (Baumeister and Kilian, 2012).

The first approach estimates models using daily closing price data and then aggregates the daily

forecasts to the monthly frequency, as proposed by Lütkepohl (1984). We henceforth refer to this

approach as bottom-up approach. Lütkepohl (1986) showed that forecasts from the bottom-up

approach are usually superior to forecasts obtained from the aggregated process, even when the

process is unknown and parameters have to be estimated.

The second approach is period-end price sampling (PEPS), which estimates models at the

monthly frequency but replaces monthly average prices by end-of-month prices, as proposed by

Ellwanger and Snudden (2021). The end-of-month forecasts values are then used as forecasts of

the average value of the corresponding month. Ellwanger and Snudden (2021) document that for

persistent data, the forecast-accuracy of the PEPS approach are often of similar magnitude to that

of bottom-up approach.

We examine of the forecast performance of both the bottom up and PEPS approach, as well as

their relative performance, by applying these methods for the first time to the monthly forecasts of

the real price of oil. Forecast via ARMA models estimated with monthly average and end-of-month

real prices are estimated for the log real price. Forecasts are converted to real prices in levels using

R̂t+h|t = exp
(
r̂t+h|t

)
, (2)

where R̂t+h|t is the forecast of the monthly average real price of oil in levels, r̂t+h|t is the forecast

of the log real price, and exp is the exponential function.

For the bottom up approach, we estimate ARMA models using the growth rate of nominal daily

prices, gt,i = pt,i/pt,i−1. Forecasts for the level of the nominal price on day i of month t+ h given

month t information are based on the model-implied cumulative net growth rate between day t, n

and day t+ h, i, denoted by ĝt+h,i|t:

p̂t+h,i|t = (1 + ĝt+h,i|t) · pt,n. (3)
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Then, nominal daily forecasts are averaged to the monthly frequency, as in Lütkepohl (1984), and

converted into forecasts of real prices by deflating the monthly nominal forecasts by the expected

CPI deflator. This conversion of the nominal forecast to real terms is akin to the adjustment made

to nominal futures prices in forecasts of the real price of crude oil (see, e.g., Baumeister and Kilian,

2012). Following these authors, we compute the expected CPI by extending the CPI using the

historical inflation rate beginning in 1986M7.6

Table 2. Forecasts of the Real Price of WTI Crude Oil Based on ARMA Models

Method
Model AR(12) AR(2) ARMA(1,1)  AR(12) AR(2) ARMA(1,1)  AR(12) AR(2) ARMA(1,1)  

Horizon
1 0.93 (0.239) 0.90 (0.139) 0.91 (0.130) 0.61 (0.000) 0.60 (0.000) 0.60 (0.000) 0.58 (0.002) 0.56 (0.001) 0.56 (0.001)
3 0.98 (0.440) 0.93 (0.275) 0.94 (0.227) 0.93 (0.021) 0.92 (0.018) 0.94 (0.022) 0.87 (0.126) 0.84 (0.113) 0.84 (0.088)
6 1.02 (0.565) 0.94 (0.334) 0.95 (0.287) 1.04 (0.723) 1.03 (0.666) 1.05 (0.753) 0.94 (0.271) 0.89 (0.215) 0.89 (0.180)

12 1.05 (0.632) 0.94 (0.354) 0.93 (0.265) 1.16 (0.908) 1.14 (0.888) 1.16 (0.913) 0.96 (0.362) 0.90 (0.250) 0.89 (0.190)
24 1.13 (0.728) 0.97 (0.441) 0.92 (0.302) 1.48 (0.989) 1.42 (0.987) 1.45 (0.989) 0.99 (0.470) 0.95 (0.385) 0.92 (0.308)

1 0.50 (0.519) 0.52 (0.294) 0.54 (0.066) 0.72 (0.000) 0.72 (0.000) 0.72 (0.000) 0.72 (0.000) 0.71 (0.000) 0.72 (0.000)
3 0.48 (0.745) 0.50 (0.599) 0.53 (0.088) 0.61 (0.000) 0.61 (0.000) 0.61 (0.000) 0.57 (0.008) 0.58 (0.002) 0.59 (0.000)
6 0.49 (0.641) 0.50 (0.519) 0.50 (0.403) 0.57 (0.042) 0.56 (0.068) 0.55 (0.100) 0.54 (0.191) 0.53 (0.276) 0.54 (0.096)

12 0.55 (0.175) 0.54 (0.263) 0.54 (0.155) 0.55 (0.143) 0.55 (0.142) 0.53 (0.408) 0.55 (0.196) 0.54 (0.261) 0.56 (0.064)
24 0.59 (0.079) 0.59 (0.059) 0.56 (0.111) 0.51 (0.958) 0.51 (0.718) 0.51 (0.900) 0.59 (0.060) 0.61 (0.035) 0.56 (0.086)

 Success Ratio

Monthly Average Prices

MSFE Ratio

Bottom Up Period-End-Price Sampling

Note: Real-time, out-of-sample forecasts for the real price of WTI crude oil, 1992M1–2021M1. “Bottom Up” is the
ex-post averaged forecast based on daily prices (Lütkepohl, 1984); “Period-End-Price Sampling” is the forecast based
on monthly end-of-month prices (Ellwanger and Snudden, 2021). Brackets report the p-values for serial dependence
robust tests of Pesaran and Pesaran and Timmermann (2009) for the null of no directional accuracy and Diebold
and Mariano (1995) for equal MSFEs relative to the monthly average no-change forecast. Boldface values indicate
statistically significant improvements over the random walk forecast at the five percent significance level.

Table 2 shows the result for the different forecasting approaches for AR(2), AR(12), and

ARMA(1,1) models. Similar results are obtained for alternative lag specifications considered in

the literature.7

The first three columns of Table 2 display the results for the models estimated with the con-

ventional monthly average data. For the majority of the models and forecast horizons considered,

they outperform the average price no-change forecasts, in line with Baumeister and Kilian (2012).

However, the improvements appear relatively modest (below 10 percent) and do not constitute

significant improvements against the conventional monthly average no-change forecast at the five

percent level at any horizon. Only for directional accuracy at the 24 month horizon do they out-

6The CPI forecasts thus correspond directly to the standard inflation forecasts computed to discount nominal
prices in the literature (see, e.g., Baumeister and Kilian, 2015; Garratt et al., 2019; Ellwanger and Snudden, 2023).

7Previous studies advocate for the use of 12 or 24 lags when estimating autoregressive model to predict crude
oil prices (Alquist and Kilian, 2010; Baumeister and Kilian, 2012). However, our results show that for the models
estimated at a monthly frequency, the AR(2) outperforms the AR(12) at most forecasting horizons.
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perform the random walk forecast at the 5 percent level.

The corresponding results for the bottom-up approach, displayed in columns 4-6 of Table 2,

display a very different pattern. At the one-month horizon, all three models exhibit about 40

percent improvements in the MSFE and a directional accuracy of 72 percent. The forecasts are

more accurate than any other one-month-ahead forecasts previously reported in the literature, as

summarized by Ellwanger and Snudden (2022). However, the absence of bold-faced values highlights

that at a 5 percent significance level, none of these forecasts are significantly more accurate than the

random walk forecast. Moreover, the performance of the bottom-up forecast deteriorates quickly for

longer forecast horizons. For 6-months-horizons and beyond, the MSFE-accuracy of the bottom-up

approach is worse than even the monthly average no-change forecast.

The forecasts based on the PEPS approach are evaluated in the final 3 columns of Table 2.

For all horizons and models, the forecasts outperform the conventional monthly average no-change

benchmark. At the one-step-ahead prediction, the PEPS approach results in the largest improve-

ments in forecast accuracy of up to 44 percent, which are significant at the 0.1 percent level. For

all three models, forecast criteria, and for all horizons, the models estimated with end-of-period

prices provide at least equally good forecasts of average prices than models estimated with average

prices. Moreover, the bold values show that the AR-models significantly predict the direction of

change in prices at the one-month-ahead relative to the random walk forecast at the five percent

level.

Similar forecast gains are also obtained for RAC and Brent crude oil. Figure 1 reports the

evolution of the MSFE and success ratios for the one-month-ahead forecast for the AR(2) models

estimated with average, end-of-month, and daily data. The results suggest that the forecast per-

formance of the bottom-up approach closely tracks that of the random-walk forecast throughout

the forecast evaluation sample, whereas the PEPS forecasts tend to outperform the random walk

forecast in the later half of the sample. For the bottom-up and PEPS approach, the gains upon

the monthly average no-change forecast at the one-month-ahead horizon are significant at the five

percent level for WTI and RAC crude oil prices for all potential ending dates of the forecast evalu-

ation sample between 1997M1 and 2020m1. For all series and for all potential ending points of the

evaluation sample, the models estimated with average prices fail to outperform the random walk.

Overall, these results show that suitably constructed univariate time-series models that exploit

disaggregated prices outperform models estimated with monthly average prices. Moreover, models

based on disaggregated oil prices can also provide improvements over the random walk forecast at

10



Figure 1. Evolution of One-Month-Ahead Forecast Evaluation Criteria for AR(2) Models

Note: One-Month-Ahead, real-time, out-of-sample forecasts of alternative crude oil price series, 1992M1–2021M1.
Forecasts from AR(2) models estimated with Monthly “Average Prices”, the “Bottom-Up” approach of (Lütkepohl,
1984), and the “PEPS” approach of (Ellwanger and Snudden, 2021). “Random Walk” is the random walk forecast
based on the last observed closing price. MSFE ratios are expressed relative to the monthly average no-change
forecast. The first 60 months are omitted to reduce starting-point effects.

the one-step-ahead prediction.

3.3 MIDAS Forecasts

Another approach that relies on disaggregated data is mixed-data sampling (MIDAS, see Ghysels

et al., 2007; Andreou et al., 2010), which allows forecasters to construct direct forecasts of lower-

frequency variables with higher frequency predictors. Previous applications of the MIDAS model

to oil-price forecasts in have focused on the role of high-frequency financial variables as predictors

(Baumeister et al., 2015; Degiannakis and Filis, 2018; Zhang and Wang, 2019). Instead, this section

uses the MIDAS setting to explore the relationship between daily oil prices and the monthly real
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price of crude oil.

To investigate the predictive content of daily oil prices for the real price of crude oil, we estimate

MIDAS models of the form

Rt+h,a = ah + βhB(L1/n; θh)Rt,a + ϵt+h, (4)

where Rt+h,a is the monthly average real price of crude oil, B(L1/n; θh) =
∑N

i=0 c(i; θ)L
i/m, and

C(1; θ) = 1. We explore both the normalized exponential Almon lag weight function and the nor-

malized beta lag polynomial for alternative lag lengths of up to 20 days of daily data. Interestingly,

the full-sample estimates are conclusive that for WTI and RAC, the coefficients on all daily prices

except the last daily price are zero. A similar pattern is obtained for Brent, except for the 3- and

6-month-ahead forecasts, for which there are some small non-zero coefficients on longer lags. The

finding is consistent with the results from Section 3.1 and supports the idea that the last observed

daily oil price contains practically all the relevant information for forecasting.

Thus, in almost all cases, the MIDAS regressions of Equation 4 simplify to the following regres-

sion equation:

Rt+h,a = αh + βhRt,n + ϵt+h, (5)

i.e., only the last observed daily closing price is included in the MIDAS forecast and used to provide

direct forecasts of future average prices. For the remainder of the section, we therefore work with

MIDAS forecasts using the parsimonious specification of Equation 5, which has the additional

benefit of facilitating the comparison across different forecast approaches.

The MIDAS forecasts of Equation 5 represent direct forecast of the real price of oil using real

end-of-month closing prices, which can also implemented via PEPS. In this case, the model is

estimated for real end-of-month closing prices as the dependent variable,

Rt+h,n = αh + βhRt,n + ϵt+h. (6)

Then, the end-of-month price is used as the forecast of the monthly average price. Finally, we

contrast the MIDAS and PEPS forecasts with conventional direct forecasts based on average prices,

Rt+h,a = αh + βhRt,a + ϵt+h. (7)

For all forecasts, parameters are estimated recursively using real-time data and forecasts are com-
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puted out-of-sample.

Table 3. Direct Forecasts of the Real Price of Crude Oil with MIDAS and PEPS

Method
Series WTI Brent RAC WTI Brent RAC WTI Brent RAC

Horizon MSFE Ratio
1 1.00 (0.443) 1.00 (0.624) 1.00 (0.172) 0.59 (0.000) 0.59 (0.000) 0.68 (0.001) 0.59 (0.000) 0.58 (0.000) 0.69 (0.001)
3 1.00 (0.544) 1.01 (0.736) 1.00 (0.464) 0.88 (0.043) 0.92 (0.099) 0.87 (0.026) 0.88 (0.022) 0.92 (0.049) 0.88 (0.013)
6 0.99 (0.383) 1.01 (0.581) 0.99 (0.403) 0.93 (0.130) 0.98 (0.341) 0.93 (0.130) 0.93 (0.097) 0.98 (0.319) 0.93 (0.096)

12 0.94 (0.249) 0.97 (0.374) 0.96 (0.295) 0.90 (0.133) 0.96 (0.302) 0.91 (0.142) 0.91 (0.116) 0.96 (0.277) 0.92 (0.124)
24 0.90 (0.172) 0.92 (0.182) 0.91 (0.150) 0.89 (0.139) 0.91 (0.172) 0.89 (0.109) 0.89 (0.133) 0.91 (0.150) 0.89 (0.101)

 Success Ratio
1 0.53 (0.265) 0.51 (0.494) 0.53 (0.392) 0.68 (0.000) 0.70 (0.000) 0.69 (0.000) 0.70 (0.000) 0.71 (0.000) 0.71 (0.000)
3 0.51 (0.575) 0.51 (0.552) 0.49 (0.740) 0.58 (0.010) 0.53 (0.288) 0.55 (0.111) 0.57 (0.031) 0.55 (0.089) 0.56 (0.062)
6 0.51 (0.558) 0.54 (0.235) 0.53 (0.318) 0.55 (0.188) 0.57 (0.049) 0.58 (0.039) 0.56 (0.105) 0.56 (0.074) 0.59 (0.014)

12 0.53 (0.343) 0.55 (0.178) 0.56 (0.147) 0.55 (0.209) 0.55 (0.131) 0.59 (0.032) 0.56 (0.161) 0.56 (0.108) 0.59 (0.037)
24 0.59 (0.068) 0.61 (0.033) 0.62 (0.027) 0.60 (0.038) 0.64 (0.007) 0.63 (0.017) 0.60 (0.051) 0.64 (0.007) 0.62 (0.019)

Monthly Average Prices Period-End-Price SamplingMIDAS

Note: Real-time, out-of-sample-forecasts of the real price of crude oil, 1992M1–2021M1. Brackets report the p-values
for serial dependence robust tests of Pesaran and Pesaran and Timmermann (2009) for the null of no directional
accuracy and Diebold and Mariano (1995) for equal MSFEs relative to the monthly average no-change forecast.
Boldface values indicate statistically significant improvements over the random walk forecast at the five percent
significance level.

Table 3 presents the results for the MIDAS and PEPS forecasts alongside the direct forecasts

constructed from the monthly average prices. It shows that the MIDAS forecasts (columns 4-

6) and PEPS forecasts (columns 7-9) are very similar for all three oil-price series and across all

forecast horizons. For all series and forecast horizons, these forecasts are at least as accurate as

the direct forecasts based on average prices (columns 1-3), and in many cases outperform them by

a substantial margin. However, these gains are very similar to those obtained from the random

walk forecasts based on last observed daily prices. The bold values indicate that at the 5 percent

significance level, the null hypothesis of no directional accuracy relative to the random walk forecast

can only be rejected for the 1-month-ahead PEPS forecasts for RAC. At the 2-year horizon, all

forecasts exhibit significant directional accuracy relative to the random walk for WTI and RAC. In

terms of the MSPE, we find no evidence for statistical significant improvements over the random

walk for any forecast.

The recursively updated MSPE and success ratios for the one-step-ahead forecast are shown in

Figure 3. Across the entire sample, the forecast gains from using MIDAS or PEPS are very similar

to those obtained from the random walk forecast from the last observed daily price. However,

for WTI and RAC, the models estimated with PEPS slightly outperform in terms of directional

accuracy compared to the MIDAS forecasts, especially towards the later half of the sample.

A key implication from the exercises presented in this section is that in practice, it makes little
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Figure 2. Evolution of One-Month Ahead Forecast Evaluation Criteria for Direct Forecasts with
MIDAS and PEPS

Note: One-month-ahead, real-time, out-of-sample forecasts of alternative crude oil price series, 1992M1–2021M1.
MIDAS forecasts computed from Equation 5, PEPS forecasts computed from Equation 6, and direct forecasts using
monthly “Average Prices” computed from Equation 7. “Random Walk” is the random walk forecast based on the
last observed closing price. MSFE ratios are expressed relative to the monthly average no-change forecast. The first
60 months are omitted to reduce starting-point effects.

difference whether the forecaster uses the real monthly average prices or the real end-of-month price

as the target variable in the estimation of the forecasting model. By contrast, using the information

contained in disaggregated oil prices and in particular the last observed oil price in the forecaster’s

information set is crucial to construct accurate forecasts.

3.4 Forecasts with Exogenous Predictors

This section examines the usefulness of disaggregated oil prices in direct forecasts that employ

exogenous predictors. These models are widely used in the literature and a key component of
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model averaging exercises (Baumeister et al., 2014; Wang et al., 2015; Baumeister and Kilian,

2015; Garratt et al., 2019). Following the literature, predictive regressions take on the form

R̂t+h,a = Rt,a · (1 + α̂h + β̂hXt), (8)

where Xt is the monthly predictor variable and α̂h and β̂h are the least-squares estimates of a

regression of the percent change in the monthly real price of oil on the predictor. In addition to

this standard specification, we propose a version of the predictive regression where the monthly

average is replaced with the end-of-month real price,

R̂t+h,n = Rt,n · (1 + α̂n,h + β̂n,hXt). (9)

Following the PEPS approach, forecasts for Rt+h,n are then used to predict Rt+h,a.

The monthly predictor variable, Xt, examined for this application, is a portfolio of oil-sensitive

stock prices, the NYSE Arca (AMEX) oil index. This index has been used to predict oil prices by

Chen (2014) and Baumeister et al. (2015), among others. For all forecasts, parameters are estimated

recursively using real-time data and forecasts are computed out-of-sample. We set αh = 0, which

is common in the literature and provides better forecasts for all series, especially at the two-year

horizon.8

The forecast performance of the two approaches is reported in Table 4. Columns 1-3 present the

results for models estimated with monthly average oil prices. For all three oil series, the forecasts

based on monthly average prices significantly outperform the average-price no-change forecast at

the one-month horizon. However, the forecast performance deteriorates quickly with the forecast

horizon and is often worse for forecasts beyond the 3-month-ahead prediction. Moreover, none of

the forecasts obtained from the traditional forecasting model significantly outperforms the random

walk forecasts of the last daily price.

Columns 4-6 present the results for models estimated with PEPS. They show that for all oil

price series and forecast horizons, the forecasts computed with PEPS outperform the forecasts

computed with monthly average oil prices. Forecasts via PEPS exhibit MSFE ratios as low as 0.54

and success ratios as high as 0.72. For Brent, the improvements in the MSFE and success ratio are

also significant at the 5-percent significance level relative to the random walk of the last daily price

8The forecast results for horizons less than one year are unchanged in terms of the economic and statistical
significance when the constant is included.
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Table 4. Forecasts of the Real Price of Crude Oil Based on the NYSE Arca Oil Index

Method
Price WTI Brent RAC WTI Brent RAC

Horizon
1 0.80 (0.006) 0.78 (0.004) 0.90 (0.071) 0.56 (0.000) 0.54 (0.000) 0.71 (0.005)
3 0.95 (0.150) 0.96 (0.156) 0.97 (0.314) 0.86 (0.035) 0.89 (0.047) 0.89 (0.074)
6 0.98 (0.059) 1.03 (0.751) 1.00 (0.459) 0.93 (0.017) 0.96 (0.065) 0.95 (0.040)

12 1.00 (0.415) 1.12 (0.934) 1.04 (0.937) 0.95 (0.049) 0.98 (0.192) 1.00 (0.440)
24 1.01 (0.571) 1.19 (0.911) 1.09 (0.996) 1.00 (0.499) 1.01 (0.582) 1.08 (0.991)

1 0.61 (0.000) 0.62 (0.000) 0.61 (0.000) 0.72 (0.000) 0.72 (0.000) 0.70 (0.000)
3 0.49 (0.703) 0.54 (0.273) 0.51 (0.543) 0.60 (0.000) 0.56 (0.023) 0.58 (0.002)
6 0.55 (0.102) 0.56 (0.166) 0.48 (0.699) 0.55 (0.066) 0.58 (0.002) 0.55 (0.097)

12 0.53 (0.175) 0.52 (0.380) 0.51 (0.281) 0.60 (0.001) 0.57 (0.012) 0.56 (0.029)
24 0.44 (0.909) 0.51 (0.564) 0.38 (0.992) 0.51 (0.464) 0.54 (0.153) 0.47 (0.772)

Period-End-Price SamplingMontly Average Prices

MSPE Ratio

 Success Ratio

Note: Real-time, out-of-sample forecasts of the real price of crude oil, 1992M1–2021M1. Regression-based direct
forecasts using the NYSE Arca oil index. Brackets report the p-values for serial dependence robust tests of Pesaran
and Pesaran and Timmermann (2009) for the null of no directional accuracy and Diebold and Mariano (1995) for
equal MSFEs relative to the monthly average no-change forecast. Boldface values indicate statistically significant
improvements over the random walk forecast at the five percent significance level.

at the one-month horizon. This finding is impressive, as no existing model-based forecast computed

with monthly average oil prices outperforms the random walk forecast at this horizon (Ellwanger

and Snudden, 2022). The MSFE gains are about 6 percent relative to the random walk, which

is smaller than the 45% improvement implied by comparisons with the average-price no-change

forecasts and more reminiscent of the short-horizon predictability documented for asset prices.

The recursively estimated MSFE and success ratios for the one-month-ahead forecasts are re-

ported in Figure 3. It shows that models estimated with monthly average prices did particularly

well during the 2000s and maintained gains relative to the conventional monthly average no-change

forecast after 2008. However, for all ending points, the forecasts constructed with monthly average

prices performed worse than the random-walk forecasts based on closing prices. Moreover, fore-

casts constructed with monthly average prices performed worse than models estimated with PEPS

throughout the entire sample.

The regression estimates for Equations 8 and 9 provide useful intuition for the forecasting results

presented in this section. Table 5 reports the coefficient estimates and robust standard errors of

the predictive regression models for WTI, Brent and the RAC. For regressions based on monthly

average prices, the estimates of β for all series are around 0.6 and the R-squared is about 15%.

For regressions based on PEPS, the estimates for β drops to 0.3, and the R-squared falls to 3% or
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Figure 3. Evolution of One-Month-Ahead Forecast Evaluation Criteria for Forecasts Based on the
NYSE Arca Oil Index

Note: One-month-ahead, real-time, out-of-sample direct forecasts of the real prices of crude oil using the NYSE Arca
oil index, 1992M1–2021M1. “Random Walk” is the random walk forecast based on the last observed closing price.
MSFE ratios are expressed relative to the monthly average no-change forecast. The first 60 months are omitted to
reduce starting-point effects.

below. This suggests that the majority of the forecasting gains from using the index in predictive

regressions with average prices stem from recovering information that is already contained in the

last available oil closing price and lost through averaging. Still, the results also imply the NYSE

Arca oil index contains some additional predictive power that is not contained in the last observed

closing price of oil.

3.5 Forecasts with Vector Autoregressive Models

A practical advantage of using PEPS for forecasts of the real price of crude oil is that it maintains the

monthly frequency and thus can easily be extended to multivariate models. This section illustrates
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Table 5. Coefficient Estimates for One-Month-Ahead Predictive Regressions Based on the NYSE
Arca (AMEX) Oil Index

Sampling
Dep. Variable WTI Brent RAC WTI Brent RAC

0.593 0.614 0.548 0.309 0.313 0.257
(0.067) (0.069) (0.063) (0.080) (0.090) (0.075)
0.0001 0.0004 -0.0002 0.003 0.005 0.003
(0.004) (0.004) (0.004) (0.005) (0.006) (0.005)

N 449 449 449 449 449 449
R2 0.148 0.149 0.142 0.030 0.024 0.024

End-of-Month Prices 

AMEX

Constant

Monthly Average Prices

Note: Coefficient estimates of α̂1, α̂1,n and β̂1, β̂1,n from Equations 8 and 9 for different crude oil price series,
1992M1–2021M1. HAC standard errors in parenthesis.

the point for forecasts with vector-autoregressive (VAR) models.

Our application examines the effect of introducing PEPS into the Kilian and Murphy (2014)

4-variable VAR model, which has been widely used in the literature. The model contains four

variables: the real price of crude oil, the growth rate of global crude oil production, a proxy for the

change in global crude oil inventories, and the real economics activity index (REA) as a measure of

global economic activity. The original model has been refined in many ways in recent studies, for

example, by using alternative economic activity indexes and inventory measures and by allowing for

stochastic volatility (see, e.g., Funk, 2018; Snudden, 2018; Baumeister et al., 2020, among others).

We focus on the original specification for illustrative purposes since it remains a benchmark for

alternative VAR models.

The estimation follows the real-time forecasts of Baumeister and Kilian (2012). Accordingly,

we estimate models with 12 autoregressive lags and with log real prices.9 Forecasts are converted

to real price in levels. Other than the crude oil price series used for estimation, no other change is

made, and all models are estimated at the monthly frequency.

Table 6 reports the forecast performance of the VAR models for the different series of the real

price of crude oil with the updated forecast evaluation sample from 1992M1 to 2021M1. The models

estimated with average prices only significantly improve upon the monthly average-price no-change

forecast in terms of directional accuracy at horizons of 6 months and beyond. The deterioration

in forecast accuracy for the MSFE at short horizons is consistent with evidence from other recent

studies (Funk, 2018; Snudden, 2018; Baumeister et al., 2020). Figure 4 depicts the evolution of the

forecast criteria over time and shows that deterioration in the MSFE ratios occurs mostly during

9Similar results are obtained for models with 24 lags, which are also frequently used in the literature.
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Table 6. Forecasts of the Real Price of Crude Oil with VAR models

Estimation
Horizon WTI RAC Brent WTI RAC Brent

1 1.00 (0.488) 0.92 (0.318) 1.05 (0.639) 0.73 (0.080) 0.75 (0.132) 0.84 (0.196)
3 0.99 (0.473) 0.98 (0.465) 1.08 (0.660) 0.91 (0.341) 0.91 (0.353) 1.07 (0.635)
6 1.04 (0.593) 1.09 (0.677) 1.15 (0.800) 0.99 (0.463) 1.04 (0.589) 1.16 (0.806)

12 1.14 (0.853) 1.17 (0.864) 1.22 (0.912) 1.11 (0.793) 1.14 (0.829) 1.24 (0.917)
24 1.03 (0.560) 1.00 (0.508) 1.05 (0.612) 1.03 (0.570) 1.02 (0.532) 1.07 (0.639)

1 0.51 (0.182) 0.56 (0.007) 0.51 (0.203) 0.69 (0.000) 0.68 (0.000) 0.66 (0.000)
3 0.55 (0.037) 0.55 (0.047) 0.54 (0.063) 0.58 (0.006) 0.58 (0.007) 0.56 (0.034)
6 0.59 (0.005) 0.57 (0.017) 0.58 (0.012) 0.61 (0.001) 0.59 (0.003) 0.60 (0.004)

12 0.59 (0.014) 0.63 (0.000) 0.57 (0.036) 0.61 (0.002) 0.61 (0.002) 0.60 (0.010)
24 0.60 (0.010) 0.59 (0.011) 0.59 (0.022) 0.59 (0.019) 0.60 (0.014) 0.59 (0.032)

Period-End-Price SamplingMonthly Average Prices

MSPE Ratio

 Success Ratio

Note: Real-time, out-of-sample-forecasts of the real price of crude oil, 1992M1–2021M1. VAR models estimated with
12 lags. Brackets report the p-values for serial dependence robust tests of Pesaran and Pesaran and Timmermann
(2009) for the null of no directional accuracy and Diebold and Mariano (1995) for equal MSFEs relative to the
monthly average no-change forecast. Boldface values indicate statistically significant improvements over the random
walk forecast at the five percent significance level.

the years 2010 to 2014.

Table 6 shows that for most cases, VAR models estimated with PEPS outperform models

estimated with monthly average prices. This is particularly true for forecasts horizons of up to

6 months. As shown in Figure 4, the improvements in forecast-accuracy at the one-step-ahead

prediction forecast are of the order of 30 percent and, with a small exception in the early 2000s,

very robust across the sample period. Even during the peak performance of the VAR model around

2008, forecast improvements as large as 40 percent could have been realized by using PEPS rather

than estimating the VAR models with monthly average prices. The results for RAC show that

estimating models with the imputed end-of-month observations instead of the average RAC yields

forecast improvements of over 30 percent, which are robust for all sample end dates between 1995

and 2021. This highlights once more that even in the case where the end-of-periods observations

are not available, approximating such observations with simple methods can produce large and

robust forecast gains.

The results of this section show that information from end-of-month prices via PEPS can easily

be incorporated into multivariate forecasting models and improves in particular short-horizon fore-

casts of such models. Undoubtedly, the VAR models presented in this section can be further refined.

However, given the plethora of modifications proposed in the literature, a complete examination of
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Figure 4. Evolution of One-Month-Ahead Forecast Evaluation Criteria for VAR Models

Note: One-month-ahead, real-time, out-of-sample forecasts of the real prices of crude oil, 1992M1–2021M1. VAR
models estimated with 12 lags using either monthly average or end-of-month (PEPS) prices. “Random Walk” is the
random walk forecast based on the last observed closing price. MSFE ratios are expressed relative to the monthly
average no-change forecast. The first 60 months are omitted to reduce starting-point effects.

alternative VAR models is beyond the scope of this paper and left for future research.

4 Robustness

The results presented in this paper are remarkably robust to alternative modelling choices. For

example, it can be shown that using ex-post revised data instead of real-time data does not affect

any of our conclusions. Moreover, very similar forecasts are obtained by imputing end-of-month

RAC prices from Brent rather than WTI prices.

Our results also hold for alternative methods of nowcasting the CPI and for forecasts exercises

which using the nominal closing price instead of nominal monthly average prices. This robustness
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is expected, as fluctuations in the CPI deflator are generally small compared to the fluctuations of

nominal oil prices (Baumeister and Kilian, 2012; Alquist et al., 2013).

Finally, it can be shown that model-based forecast using disaggregated approaches are also

superior to model estimated with quarterly and annual average price, which are of primary interest

to policymakers (Baumeister and Kilian, 2014, 2015). Consistent with theoretical results, the

forecast improvements are even larger at the quarterly and annual frequency compared to the

monthly frequency.

5 Conclusion

The standard approach in the literature is to compute model-based forecasts of the real price of

crude oil from monthly average prices. We have shown how approaches that exploit information

from the underlying daily oil prices can be applied to existing models. Forecasts relying on end-

of-month prices yield forecast improvements over the standard no-change forecast of up to 45%

at the one-step-ahead prediction, which is unprecedented in this literature. The magnitude of the

gains decrease with the forecast horizon, yet models estimated with daily prices still improve upon

traditional forecasts as far ahead as the 24-month horizon.

We also directly tested, for the first time, whether model-based forecasts of the monthly real

price of crude oil outperform the random walk forecast based on monthly closing prices. We find

that none of the forecasts estimated with monthly average prices outperform the random walk at

horizons lower than 6 months. By contrast, some approaches relying on daily prices displayed

significantly lower MSFE ratios or improved directional accuracy relative to the random walk

forecast. In economic terms, the forecast gains relative to the random walk are reminiscent of the

short-horizon predictability documented for asset prices.

We have proposed practical solutions for how to incorporate information contained in daily oil

prices into several types of model-based forecasts that have previously only been estimated with

average oil prices. This includes intuitive methods for imputing end-of-month observations for the

RAC and for backcasting end-of-month prices to estimate models with longer historical data. Un-

doubtedly, the refinement of the models and methods considered in this paper opens up a promising

avenue for further research. The fact that even simple applications of disaggregated approaches

provide large improvements over models estimated with average oil prices only strengthens our

insight that forecasts of the real price of oil should exploit the information contained in daily oil
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prices.
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Online Appendix (Not for publication)

A1 Real-Time Data

This section describes the construction of the real-time data used in the empirical exercises.

Crude oil prices: Crude-oil price data for WTI and Brent are obtained from the EIA Petroleum

and other liquids. Daily closing prices for WTI and Brent are used to calculate both the monthly

average and end-of-month prices. This data is not subject to revisions and is observed in real time.

As reported by the EIA and standard in applied work, the monthly average price is the simple

average of daily closing prices. The end-of-month price is the closing price on the last trading day

of the month. The daily series of WTI and Brent prices begin in 1986M1 and 1987M5, respectively.

For models estimated at the daily frequency, the negative WTI price on April 20, 2020, is replaced

with an imputed price for that day using the daily growth rate of Brent prices. The monthly WTI

and Brent price series are backcasted to 1983M4 using the growth rate in the monthly price of the

futures front contract. Monthly prices before 1983M4 are backcasted using the growth rate of the

RAC (imported). None of these backcasting choices are crucial for our results, as our main findings

are robust to estimating models with data starting in 1983 or 1986.

Table A1. Descriptive Statistics for the Real Prices of Crude Oil

Monthly Average Date Range Mean Std. Dev. Min Max
U.S. Refiner Acquisition Cost, Imported 1973m1 - 2021m1 24.03 12.31 5.95 60.85

Brent 1973m1 - 2021m1 23.50 10.67 6.08 61.56
West Texas Intermediate 1973m1 - 2021m1 22.63 11.09 5.71 58.34

End of Month Date Range Mean Std. Dev. Min Max
U.S. Refiner Acquisition Cost, Imported 1973m1 - 2021m1 24.07 12.37 5.76 63.64

Brent 1973m1 - 2021m1 22.27 10.23 5.02 64.36
West Texas Intermediate 1973m1 - 2021m1 21.39 10.51 5.13 60.68

Note: All series are the level of real prices from 1973M1–2021M5. 2021M5 data vintage. The end-of-month
price for the U.S. refiner acquisition cost (imported) is imputed using the WTI price. Nominal crude-oil price
data obtained from the Energy Information Administration and the consumer price index is obtained from the
Federal Reserve of Philadelphia.

Oil market variables: The real-time data for the nominal U.S. refiner acquisition cost for crude-

oil imports, world crude-oil production, U.S. crude-oil inventories, U.S. petroleum inventories, and

OECD petroleum inventories are obtained from the EIA. Real-time vintages start in 1973M1 and use

the vintages of Baumeister and Kilian (2012) from 1991M12 to 2010M12. Vintages from 2011M01

onwards are collected using the same data sources. This real-time database is updated monthly

and is publicly available, along with further documentation on Stephen Snudden’s website. The

27

https://www.eia.gov/dnav/pet/pet_pri_spt_s1_d.htm
https://www.eia.gov/dnav/pet/pet_pri_spt_s1_d.htm
https://stephensnudden.com/data-code/


updated real-time data is similar to Garratt et al. (2019) but differs primarily in that all historical

releases, and thus data revisions, are included.

Other economic variables: For the construction of the Real Economic Activity index we use

Kilian (2009)’s freight-rate data until 1984M12 and, thereafter, monthly values of the Baltic Dry

Index obtained from Bloomberg. The index is computed using the corrected formula (Kilian, 2019).

As in Baumeister and Kilian (2012), the real-time data for the monthly seasonally adjusted U.S.

consumer price index for all urban consumers is obtained from the Economic Indicators published

by the Council of Economic Advisers from the FRASER database of the Federal Reserve Bank of St.

Louis and from the macroeconomic real-time database of the Federal Reserve Bank of Philadelphia.

The AMEX Oil Index is obtained from Yahoo Finance (XOI) and is available in real time.

Nowcasting

The CPI series, the global crude-oil market variables used in the VARs, and the refiners import

price of crude oil are subject to historical revisions and are reported with a lag. For each vintage,

observations that are missing due to reporting lags are nowcasted following Baumeister and Kilian

(2012):

• Missing observations for the U.S. CPI, and U.S. crude-oil inventories are nowcasted by ex-

tending the series by using the average of the historical growth rate at the respective point

in time.

• Missing observations for the ratio of OECD petroleum inventories to U.S. petroleum inven-

tories are kept constant at the last available value for this ratio.

• Monthly nominal U.S. crude oil imported acquisition cost by refiners are extrapolated with

the growth rate of the monthly average of the nominal WTI price.
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