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Abstract

The energy industry currently faces significant uncertainty in future demand and

supply. Despite this, policies for decarbonizing the power sector are often based

on predetermined scenarios. In this paper, we develop a dynamic stochastic model

of generation capacity investment to evaluate the consequences of neglecting un-

certainty under ambitious environmental targets. The model is calibrated using

hourly data from the German electricity system for the period 2015-2020. The re-

sults show that disregarding uncertainty results in vastly underestimating the cost

of decarbonization and hinders reaching environmental targets. Our study suggests

a practical approach of focusing on a more pessimistic, predetermined scenario as a

better solution.
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Montréal, QC H3T 2A7, Canada (e-mail: david.benatia@hec.ca); and CREST (UMR 9194), ENSAE,

Institut Polytechnique de Paris, 5 Avenue Henry Le Chatelier, 91120 Palaiseau.

1



1 Introduction

Decarbonizing the power sector is crucial for the energy transition, but current European

national roadmaps rely heavily on deterministic scenarios for future electricity systems,

future electricity systems, with little consideration to future uncertainty. However, the

distant future remains highly uncertain, as exemplified by recent major events such as

the COVID-19 crisis, war in Ukraine, and climate disasters, which have caused unforeseen

fluctuations in electricity demand and supply, resulting in significant consequences.

This paper argues that neglecting uncertainty in long-term capacity planning can result

in significant economic and environmental consequences. We quantify the economic costs

and environmental impacts of capacity planning under mispecified uncertainty regarding

future supply and demand conditions using a dynamic stochastic model of capacity in-

vestment under uncertainty. We consider three sources of uncertainty: (1) future demand,

(2) natural gas prices, and (3) renewable energy availability. To study the consequences

of misestimating uncertainty, we calibrate our model for Germany.

Specialized government research centers regularly conduct prospective studies to de-

termine energy transition policies that meet environmental targets. These studies focus

on optimizing production costs in a deterministic environment, assessing the feasibility

and cost-effectiveness of different renewable energy and energy efficiency measures. The

resulting reports are used to establish environmental targets and develop appropriate

policy tools, such as carbon pricing and renewable support policies. Examples of such re-

ports include the European Union’s 2050 Energy Strategy, the French TSO report ”Futurs

énergétiques 2050,” which outlines necessary investments in renewable energy infrastruc-

ture and considers policy and market developments needed to support the deployment of

renewable energy sources. The German government’s Energiewende plan also relies on

this deterministic modeling approach.

Power generation is fraught with uncertainties, including operational issues like un-

planned outages, as well as cost uncertainties, particularly fuel costs. With the energy

transition and the increasing penetration of renewable power, new uncertainties arise.

Firstly, renewable production is weather-dependent and less predictable than conventional

power plants. Secondly, there is technological uncertainty surrounding backup technolo-

gies, such as large-scale storage (IEA, 2022). Finally, as many European countries phase
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out coal and nuclear power plants, they rely more on gas production, which is concerning

given the volatility of gas prices that drive spot market prices and affect the profitability

of all production assets.

Investment in future power plants requires annual projections of electricity demand,

with a goal of exceeding anticipated levels. However, maintaining adequacy of electric-

ity supply is critical and requires precise matching of supply to demand every second.

Economic trends and shocks, such as the COVID-19 pandemic, can significantly impact

electricity consumption, as evidenced by the 12% reduction in consumption during the

quarantine period in France (Benatia, 2022). Additionally, electricity demand is heavily

influenced by weather and seasonal variations, which are expected to become more unpre-

dictable with climate change. As a result, investment decisions must factor in significant

uncertainty.

Scenario-based techniques are commonly utilized to integrate uncertainty into de-

mand and production forecasts. This involves using optimistic to pessimistic scenarios

to facilitate straightforward calculations and technical assumptions, without depending

on intricate probabilistic models. While this method can effectively optimize investment

trajectories for each scenario, it has some limitations and disadvantages. One significant

drawback is that it neglects additional costs linked with excess or shortfall generation

fleets. This includes the cost of amortizing extra investments or the cost of a significant

generation shortfall. Thus, when using scenario-based techniques to make investment

decisions, it’s important to consider these costs.

Policymakers prioritize matching electricity demand, even at the expense of envi-

ronmental concerns during unforeseen events. Transmission System Operators (TSOs)

provide emergency reserves to adjust power supply, but these reserves only cover a small

portion of planned production, which is not always sufficient. For instance, in response to

soaring gas prices during the Ukraine crisis, France and other European nations reopened

coal plants to protect consumers from higher electricity costs and potential blackouts 1.

However, this decision had significant environmental repercussions that must be taken

into account in future policymaking. On the other hand, investors need to anticipate

future asset profitability years in advance to build new capacities and assess spot market

1https://www.lemonde.fr/en/economy/article/2022/09/02/despite-climate-commitments-t

he-eu-is-going-back-to-coal 5995594 19.html
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revenues. As a result, forecasts remain necessary.

Main contributions. In this paper, we demonstrate the significant impact of uncer-

tainty on optimal energy transition paths. Specifically, we make three key points: Firstly,

failure to account for uncertainty leads to substantially different optimal energy transition

paths. Secondly, neglecting uncertainty can result in a significant underestimation of the

cost of a successful transition or can further delay the transition and increase the failure

rate of the system. Thirdly, setting an environmental target without properly accounting

for uncertainty can be highly inefficient in negative shock scenarios. Our findings un-

derscore the importance of taking into account uncertainty when designing policies for

energy transition. By doing so, we can ensure that we achieve a successful and sustainable

transition, even in the face of unexpected challenges.

Literature review. We developed a model based on the Generation Expansion Plan-

ning (GEP) approach used in previous reports, aimed at optimizing the expansion of

power generation systems, particularly centralized systems. The literature frequently in-

cludes reviews of GEP modeling, such as Koltsaklis and Dagoumas (2018). Two main

methods are used to model uncertain elements in the generation expansion planning prob-

lem: deterministic and probabilistic approaches. Deterministic models produce a single

optimal solution that represents the best expansion plan based on given assumptions.

In contrast, probabilistic models directly account for uncertainty during the optimization

process. Many studies have argued for the increased robustness of probabilistic approaches

over deterministic methods (Conejo et al., 2016; Scott et al., 2021). However, as noted by

Scott et al. (2021), only 20% of papers published on this topic use stochastic modeling for

production or demand, with many still opting for sensitivity analysis of parameters used

(Shirizadeh et al., 2022). This approach is not sufficiently robust, as it neglects forecast

errors and their consequences. Our paper aims to quantify the consequences of choosing

a deterministic rather than probabilistic approach.

We also examine the impact of uncertainty on policy design choices. In their study,

Weitzman (1974) compared two policy instruments, namely quantity regulations and price

instruments, to control externalities. They concluded that in the presence of uncertainty,

price instruments, such as taxes or subsidies, are generally more efficient than quantity reg-
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ulations. For the transition to renewable energy, a variety of policy instruments have been

proposed and implemented, including carbon emission regulations, such as carbon taxes,

cap and trade systems, and emissions targets, as well as support for renewable energy,

such as Renewable Portfolio Standards, Feed-in Tariffs, and Research and Development

Funding. Several studies have examined the effectiveness of these policy instruments.

For instance, Gugler et al. (2021) concluded that carbon taxes are more effective than

renewable subsidies in reducing carbon emissions, as they internalize the use of fossil fuel

plants and are less costly. Petitet et al. (2016) advocated for a significantly high carbon

price to encourage wind investments, while Gawel et al. (2014) and del Ŕıo (2017) dis-

cussed policy tool interactions. Fischer and Newell (2008) argued that a combination of

environmental and technology policies is necessary for mitigating climate change, while

Gerlagh and Van der Zwaan (2006) compared different policy instruments and concluded

that the carbon intensity target is the most cost-efficient approach. Finally, Fischer and

Preonas (2010) and Borenstein and Kellogg (2022) found that combining policies can in-

crease the deployment of renewable energy technologies, but also noted that there can be

diminishing returns from policy interactions.

In this paper, we investigate the impact of demand and production uncertainty on en-

ergy transition policy, and how they interact with public policies. We review prior research

in this area, including Aı̈d et al. (2020) who examined the optimal timing for renewable

market entry under a stochastic cost process, and Alonzo et al. (2021) who quantified

revenue uncertainty for wind producers to determine the need for support mechanisms.

de Vries and Heijnen (2008) were pioneers in introducing a stochastic demand process,

showing that the socially optimal volume of generation exceeds the theoretical optimum

in the presence of perfect knowledge. Meanwhile, Scott et al. (2021) demonstrated that

including uncertainty in the analysis leads to underestimation of the market price level

and overestimation of the carbon dioxide avoided. Schröder (2014) applied a combined

investment and dispatch model to the German electricity market, comparing a stochas-

tic and deterministic path to show how fuel and carbon price risks impact investment

decisions. Finally, Lecuyer and Quirion (2019) studied the interactions between carbon

emissions trading systems and renewable energy subsidies under uncertainty, concluding

that renewable subsidies are necessary as a complement to carbon tax when uncertainty

is substantial. In our paper, we extend this literature by assessing the impact of external
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uncertainty on the efficacy of policies to decarbonize the electricity sector.

Finally, our paper introduces a study of the consequences of unforeseen extreme events.

The electricity demand is mainly influenced by weather factors, such as temperature sen-

sitivity, and also by macroeconomic conditions, including the growth of industries, de-

velopment of public and tertiary services, access to energy, and the digitalization of the

economy, among others. This uncertainty factor plays a significant role in the future

energy transition. To compensate for the intermittency of renewable energies, controlling

the demand is one of the main levers. This control allows the demand to align with

the availability of renewable production resources instead of following its historical cycles

(day/night, peak/off-peak). Therefore, it is common to assume in engineering or opera-

tions research literature that the demand curve is smoothed over time and increasingly

predictable. However, historically, the demand has regularly experienced unanticipated

shocks (Craig et al., 2002). It has proven to be particularly vulnerable to black swan events

(Benatia, 2022). Therefore, we introduced random extreme shocks in our modelling to

account for this phenomenon.

This paper is structured as follows. Section 2 describes the model construction. Sec-

tion 3 outlines a calibration exercise and simulation strategies. Section 4 analyzes the

implications of uncertainty for energy transition modeling. Finally, Section 5 presents the

conclusion.

2 The Model

A central planner is in charge of organizing the supply of electricity throughout the energy

transition. It takes investment and production decisions in discrete time t = 1, ..., T <∞
in order to minimize the long-run system cost while accounting for operational constraints

and environmental objectives.

The timing of decisions and uncertainty is as follows:

1. At the beginning of year t, all uncertainties about demand and supply conditions

for the entire year are resolved and are known to the central planner.

2. Investment: Upon observing the realizations of uncertainties, the central planner

decides how much new capacity to install of each generation technology, which will
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become available at the beginning of year t + 1. These decisions must account for

the uncertainty about the demand and supply conditions in years t+ 1, t+ 2, ..., T .

3. Production: For each hour h = 1, ..., 8760 of year t, the planner seeks to minimize

the cost of supplying electricity given the realization of uncertainties for the current

year.

2.1 Main parameters

In this section, we present the main parameters for demand, investment and production

costs, and the costs of supply shortages.

Demand. The demand for electricity in year t and hour h is specified as

QD
th = α̃hAt +Dth, (1)

where α̃hAt is a deterministic time-varying component and Dth is a random demand

shock following a known probability distribution presented in due time. Both components

are exogenous to supply conditions, and there is no demand-response technology.

The deterministic demand for electricity is characterized by hourly, daily, and monthly

variations, captured by the α̃h coefficients, and a long-run trend component At. This trend

is useful to model the long-run structural changes associated with the electrification of the

economy (e.g., the adoption of electric vehicles, the decarbonization of industry, changes

in heating practices, etc.).

Investment costs. There are two main types of generation plants: conventional power

plants and renewable power plants. We specify investment costs as follows.

At time t, the conventional capacity of fuel f corresponds to the existing capacity

Kf
t−1 in t− 1, augmented by the net capacity additions decided in t− 1, as given by

Kf
t = Kf

t−1 + Ift−1, (2)

where Ift−1 represents capacity additions, net of retirements, entering production in period

t.
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Capacity additions of conventional capacity of fuel f are associated with a construction

cost of γr per MW. Only a fraction π of the initial investment is recovered in case of

retirements. The corresponding investment cost function writes as

Ift (Ift ) = γft I
f
t

(
1Ift ≥0 − π1Ift <0

)
, (3)

where the parameter γft changes in time and Ift ≥ −Kt−1. Similar law of motion and

investment cost functions hold for renewable capacity of source r.

Short-run costs. Conventional power plants are perfectly controllable up to their

capacity limit. Let qft denote the output at time t of conventional plants with fuel

f ∈ {gas, coal, oil}, which production is constrained by the corresponding installed ca-

pacity at time t, denoted Kf
t .2

The cost function of conventional plants of fuel f at time t is defined as

Cf (qft ) = afK
f
t + qft (bf + hft + cftτt), (4)

which includes both fixed and variable components. The former is the fixed main-

tenance cost aiK
i
t that varies with installed capacity. The variable cost has three com-

ponents: a variable maintenance cost biqft , a fuel cost hftq
f
t , and a carbon cost cftτtq

f
t .

The latter depends on the carbon intensity cft of the plant and the carbon price τt. The

marginal cost is hence equal to MCf
t = bf + hft + cftτt.

Renewable power plants are constrained by random weather conditions, but their

production can be curtailed if needed. The production qrt of renewable plants of source

r ∈ {wind, solar} is constrained by εrtK
r
t , where εrt denotes the maximum capacity factor

in t for renewable energy source r, and Kr
t denotes the corresponding installed capacity.

The cost function of renewable plants of source r at time t is defined as

Cr(qrt ) = arK
r
t + qrt br, (5)

where arK
r
t represents the fixed maintenance cost, and qrt br is the variable operation and

maintenance cost. The marginal cost MCr
t = br is hence constant through time.

2Our model abstracts from planned and forced outages.
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Failure costs. A supply shortage, or failure, occurs if the total available capacity Kht

at a given time is insufficient to cover the realized demand Qht > Kht. We assume that,

in such event, the central planner is able to ration consumption by the excess demand

Qht −Kht > 0 through rolling blackouts.

Rationing demand has however welfare implications for unserved consumers. The

welfare cost is specified as an affine function of the default quantity, and is given by

Cfail(Qht −Kht) = p+ (Qht −Kht)× V OLL, (6)

if Qht > Kht, and 0 otherwise. The key parameter V OLL corresponds to the Value

Of Lost Load, i.e. the consumers’ marginal willingness to pay to avoid rationing of one

MWh, and p is the lump-sum penalty faced by the planner for reaching a positive default

quantity.

Uncertainty. We model three sources of uncertainty: (1) demand shocks Dth, (2) re-

newable production shocks εrth, and (3) fuel prices hfth at the hourly level. For numer-

ical tractability, we specify these uncertainties by using a joint discrete probability dis-

tribution of annual trajectories of hourly random shocks for each component, denoted

Ωtt = (Dt, ε
wind
t , εsolart , hgast ). These trajectories are drawn from two sets of possible re-

alizations: normal years and extreme years. Note that there is only uncertainty about

demand and supply conditions in the following years, which thus affect investment de-

cisions but not current year’s production decisions. We give a brief description of our

modelling choices here, and provide more details in the empirical section.

Annual trajectories of hourly random shocks drawn from normal years are designed

to correspond to historical realizations of demand, renewable capacity factors, and fuel

prices. In opposition, extreme years are artificial trajectories with distinctive features.

We consider two cases: “good news” and “bad news” years, each built around the same

reference historical year.

The motivation behind this modelling choice is driven by the recent events with large

consequences on electricity markets, such as climate disasters, the COVID-19 crisis, and

the war in Ukraine. In “good news” years, the electricity demand and natural gas prices

are lower than in the reference year, but renewable capacity factors are higher. During

these years, system costs and CO2 emissions are smaller by construction. “Bad news”
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years are the symmetrical opposites, and drive the risks of supply shortages and missing

environmental objectives.

2.2 The central planner’s objective

The central planner’s problem can be separated into a static problem about production

decisions given realized supply and demand conditions, and a dynamic problem about

investments decisions in a uncertain environment about future years’ supply and demand

conditions.

The static problem. In each hour h of any year t, the sum of total supply QS
h =∑

f

qfh +
∑
r

qrh and the unserved energy due to shortages qfailh must equate the realized

demand QD
th. This problem being the same for any t, we neglect the t subscript for clarity.

We further assume that there is no dynamic cost components at the production stage.

The central planner solves the least-cost dispatch problem, i.e. it seeks to minimize

the cost of achieving this equilibrium condition under operational constraints, defined as

min
qfh ,q

r
h,q

fail
h ,∀f,r

∑
f C

f
h (qfh) +

∑
r C

r
h(qrh) + Cfail

h (qfailh )

s.t.



0 ≤ qfh ≤ Kf ,∀f
0 ≤ qrh ≤ εhK

r,∀r
0 ≤ qfailh∑
f

qfh +
∑
r

qrh + qfailh = QD
h

Solving this problem is simple given the assumption of constant marginal cost func-

tions. Technologies are ranked in ascending order of their marginal costs, and each tech-

nology enters production sequentially only after the previous technology’s capacity is

depleted. We impose assumptions on the cost parameters so that the solution can be

characterized as follows:

1. Renewable plants have relatively small marginal costs. Wind plants enter production

before all other plants because they have the smallest marginal cost, bwind < bsolar <

bf . Solar plants start producing when QD
h > Kwind. Both types of renewable
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plants produce up to available capacity qrh = εrhK
r for each r as soon as QD

h ≥
εwind
h Kwind + εsolarh Ksolar.

2. Conventional plants enter production sequentially using the same approach as early

as QD
h ≥ εwind

h Kwind +εsolarh Ksolar. The merit-order depends on the carbon price and

fuel prices.

3. Supply shortage is so expensive that it only occurs if the realized demand exceeds

the total available capacity, i.e. qfailh > 0 if and only if QD
h >

∑
f K

f
h +

∑
r ε

r
hK

r
h. In

that case, it is equal to qfailh = QD
h >

∑
f K

f
h +

∑
r ε

r
hK

r
h.

Using this characterization, we obtain the optimized cost functions in each hour as

functions of the installed capacity of each technology and realized supply and demand

conditions. Then, we sum these cost functions across the hours of a given year to obtain

the annual-level optimized cost function conditional on the realization of the annual tra-

jectory of random shocks, denoted C∗(Kt,Ωt), where Kt = {Kf
t,∀f , K

r
t,∀r} is the vector of

installed capacities. This function is finally used to write the dynamic problem.

The dynamic problem. The planner’s objective is to determine an optimal investment

path that minimizes the discounted sum of annual supply costs and investment costs. The

corresponding optimization problem is given by

min
{Ift ∀f,Irt ∀r}t=0,..,T

T∑
t=0

βtEΩ

[
C∗(Kt,Ωt) +

∑
f

If (Ift ) +
∑
r

Ir(Irt )

]
, (7)

and subject to the transition laws described above. At each time t, the state of the

system is fully characterized by the vector of installed capacities Kt and the realizations

of random shocks Ωt. Denoting the associated value function by Vt(K,Ω), we obtain the

equivalent recursive formulation

Vt(Kt,Ωt) = min
({Ift ,Irt })

{C∗(Kt,Ωt) +
∑
f

If (Ift ) +
∑
r

Ir(Irt ) + βE[Vt+1(Kt+1,Ωt+1)]} (8)
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We solve this problem numerically using the backward induction algorithm. To alle-

viate computations, we assume that random shocks are independent across years, so the

expectation about next period’s state does not depend on the current’s state realization.

Environmental objectives. We consider three possible policies aimed at achieving

environmental objectives: (1) carbon pricing, (2) renewable energy targets, (3) carbon

emissions reduction targets. Carbon pricing affects directly the marginal cost of pro-

duction of conventional plants in the static problem through the value of τt, but it only

affects the dynamic problem indirectly. However, incorporating the targets requires some

modifications to the dynamic problem. We proceed as follows.

Renewable energy targets are interpreted as constraints on the total renewable capacity

installed at specific dates, denoted as a sequence {Kr
0, K

r
1, ..., K

r
T}. We model this into

the dynamic problem by augmenting the contemporaneous cost in (8) with the penalty

term
∑

r κr(K
r
t −Kr

t )1Kr
t>Kr

t
, where κr measures the stringency of the targets associated

with technology r.

Similarly, emissions reduction targets are interpreted as constraints on the total re-

duction in year t with respect to year 0, denoted Et. This sequence of constraints

{E0, E1, ..., ET} is used to enforce the targets in the dynamic problem. We add the

penalty term λ(Et −Et)1Et>Et to the contemporaneous cost in (8). λ captures the strin-

gency of the emissions reduction targets.

These environmental constraints may not be satisfied if the stringency policy parame-

ters κ and λ are not large enough. We use this feature to model the fact that governments

sometimes miss legally-binding environmental targets.

3 Case study: Germany 2030

Our proposed simulation exercise models the German electricity mix for the period of

2021 to 2030. We will study the consequences of neglecting uncertainty and the effects of

policy instruments over a 10-year horizon.
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3.1 Empirical strategy

To study the effects of public policies on investment strategies, we will represent three

strategies for the monopoly (planner) that choose an investment path considering uncer-

tainty in the state of the future Ω.

1. Unsuspecting planner: The unsuspecting planner makes their investment deci-

sion by selecting a future scenario Ω̃ as a reference The unsuspecting planner does

not revise their predictions since the future’s state is independent of the past.

V U
t (Kt,Ωt) = min

({Ift ,Irt })∈Ct
{C∗(Kt,Ωt) +

∑
f

If (Ift ) +
∑
r

Ir(Irt ) +β[V U
t+1(Kt+1, Ω̃t+1)]}

(9)

2. Counterfactual: The Perfect foresight planner: The Perfect Foresight planner

serves as a counterfactual scenario, enabling us to calculate the optimal outcome in

the absence of uncertainty.

V PF
t (Kt,Ωt) = min

({Ift ,Irt })∈Ct
{C∗(Kt,Ωt)+

∑
f

If (Ift )+
∑
r

Ir(Irt )+β[V PF
t+1 (Kt+1,Ωt+1)]}

(10)

3. Alternative strategy: The Stochastic planner: The stochastic planner calcu-

lates a closed-loop solution and anticipates future uncertainty. Unlike the determin-

istic planner, it weighs each scenario and makes decisions based on the probability

of making mistakes.

V S
t (Kt,Ωt) = min

({Ift ,Irt })∈Ct
{C∗(Kt,Ωt)+

∑
f

If (Ift )+
∑
r

Ir(Irt )+βE[V S
t+1(Kt+1,Ωt+1)]}

(11)
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3.2 Calibration

We conducted a Monte-Carlo exercise with 100 simulations, and a 8% discount factor,

using the following parameters.

Modelled technologies The planner can invest in gas and wind power plants. Oil

power plants proportion remains constant. Short-run costs are calibrated using Kost

(2021). The investment costs for gas power plants are assumed to be constant, while

wind power investment cost decreases over time. Coal and oil prices are based on IEA

Net Zero Emission scenario. Gas prices come from Dutch TTF historical data.

Scenario calibration We modelled 7 future realisations Ωt, using 5 historical years

(from 2015 et 2019), and 2 synthetic extreme scenarios using COVID-19 and Gas crisis

in Europe.

To create the “Good news” scenario, we used the estimation of -12% decrease of

demand during COVID-19 based on the estimation from Benatia (2022), applied to the

winter period. Gas prices correspond to 2020 prices (lowest historical year in our dataset).

The renewable production was scaled to recover the third quartile of the historical distri-

bution, allowing us to represent higher production than usual. This is a favorable scenario

for the planner.

The “Bad news” scenario is the counterpart of the previous scenario. In this case, an

event led to a +12% increase in demand during winter, and the renewable production was

scaled to recover the first quartile of the historical data. We used the 2022 gas price data,

considering the exceptional price peaks this year.

We assigned a uniform probability to each state, i.e., there is over 70% chance of

drawing an historical scenario each year. As a reference scenario for the unsuspecting

planner, we chose historical year 2018 because in our data, the renewable production was

lower than usual, and the demand higher, giving us a precautionary scenario.

Public policies calibration We calibrated 4 cases of public policies, in which both

the coal phase-out plan and solar energy investment path were shared and exogenous: In

all simulations, the capacity additions of solar PV and the phasing out of coal capacity

are both set on the Germany’s energy transition roadmap.
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1. No additional policy: Only coal phase-out plan and solar energy plan are con-

sidered, conterfactual scenario

2. Carbon pricing policy: Carbon tax τt increase linearly over time and reach 130e

by the year 2030, based on the International Energy Agency’s (IEA) Net Zero Emis-

sions scenario

3. Renewable targets policy: Increase of at least 10GW of onshore wind per year

starting in 2025, in concordance with the latest objective set by the German gov-

ernment

4. Carbon emissions targets: Standard of -48% on emissions in 2030 compared to

2021 is proposed, calibrated on the average emission reduction level achieved with

the binding constraint on renewables

Electricity demand We used historical hourly demand data for Germany from 2015

to 2021 to model the projected demand. To estimate the predictable deterministic share

based on this data, we use the following econometric equation:

demand = β0 + β1season+ β2peakweek + β3peakweekend+ β4year + εt (12)

The equation was estimated using a classical OLS estimator. The estimation revealed

that 31.8% of the variance in the data could be explained by predictable seasonal varia-

tions. Residual is assumed to be an exogenous shock.

In addition, we have added a 2% upward trend in the predictable component of de-

mand, representing the electrification of the economy.

Capacity factor construction We have developed our own aggregated load factor for

wind energy in Germany, as historical data does not represent curtailment phenomena,

which refers to the voluntary interruption of wind generation when it becomes economi-

cally profitable.

We reestimated the national renewable generation potential in several steps. First, we

compiled a list of the 50 most geographically representative clusters from the wind farms
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in Germany, using a k-means clustering algorithm. We obtained a potential of production

for these clusters using Renewable Ninja website (Staffell and Pfenninger, 2016). We

used the following econometric equation to compute for the weights of the representative

clusters on the national capacity factor:

nationalproductiont = α0 +α1cluster1production+ ...+α50cluster50production+ ζ (13)

The equation was estimated using non-negative least squares (NNLS) estimators. Sim-

ilar exercise was conducted to obtain a corrected solar capacity factor.

Failure cost estimation To get a representative VOLL estimation for the country, we

computed a weighted average of estimated VOLL per sector from Growitsch et al. (2013).

We obtained a parameter of 7621e per MWh of missing production.

4 Main results

We considered several policy scenarios and we compare the results under different as-

sumptions about the central planner’s approach to uncertainty. We start by presenting

the reference, or no policy scenario.

No policy. In the reference scenario with no policies, the unsuspecting planner (UP)

tends to under-invest in gas capacity because they have too optimistic expectations about

renewable production and electricity demand. In contrast, the stochastic planner (SP)

invests more in gas capacity so as to hedge against extreme scenarios. The planner with

perfect foresight, or foresighted planner (FP), builds less capacity than SP, but more than

UP, as shown in Figure 1.
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Figure 1: Production by technology (No policy)

Table 1 reveals that if the future is favourable, the minimum net present value (NPV)

of SP is 5 Bn e higher than UP. However, Table 2 shows that the probability of failure is

significantly higher for UP than SP, resulting in a maximum NPV that is 25 Bn e higher

than SP due to the high failure cost in case of low renewable production. On average, SP

results in an NPV that is closer to FP, despite an overcost of 3 Bn e .

Table 1: No policy scenario: Distribution of Net Present Values

Average Net Present Value (Billion euros)

Mean Min Max Std. Q0.25 Q0.75

Perfect Foresight 68.05 53.64 91.26 8.59 61.51 72.70

Stochastic 71.43 59.90 100.36 8.83 65.22 75.37

Unsuspecting 75.29 54.46 125.78 16.13 62.30 86.17
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Table 3 shows that SP relies less on coal for production and results in less carbon

emissions than FP because of its higher installed gas capacity.

Table 2: No policy scenario Summary

Failure rate -50% CO2 probability Coal production

Perfect Foresight 0.03% 0.89 23.72%

Stochastic 0.04% 0.89 23.59%

Unsuspecting 0.06% 0.89 23.77%

This table reports failure probability, probabilities of reaching a reduction of 50% reduction in carbon

emissions, and average share of coal production in 2030

Table 3: No policy scenario: Carbon emissions distribution

CO2 emissions (% reduction from 2021)

Mean Min Max Std. Q0.25 Q0.75

Perfect Foresight -25.81% -58.96% -11.53% 12.64 -25.24% -18.61%

Stochastic -25.94% -58.96% -11.57% 12.88 -25.24% -18.62%

Unsuspecting -25.79% -58.00% -11.78% 12.59 -25.22% -18.56%

Carbon pricing. Carbon pricing policy led to very similar installed capacities than

the no policy scenario. However coal production share decreases for the three investing
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strategies. Table 5 shows that carbon pricing results in a 17-point drop coal production

than under no policy. There is a switching effect in favor of gas production, that becomes

less expensive, as long as no “Bad news” shock appears.

Table 5 shows that the carbon price policy doubled the NPVs compared to the reference

scenario, and increased the gap between minimum and maximum values, from 38 Bn e

to 74 Bn e . In particular, the gap between the maximum value and third quantile for FP

is 36 Bn e : this can be explained by the strong difference in gas price between historical

scenarios and extreme shocks. Two factors are at play here: firstly, carbon emissions

are now taxed, which has a weight on the NPV, and secondly, the system costs now rely

more than before on the gas price, which is stochastic. Therefore, the final costs are more

volatile and may even lead to a switch back to coal production.

Table 4: Carbon pricing scenario: Distribution of Net Present Values

Average Net Present Value (Billion euros)

Mean Min Max Std. Q0.25 Q0.75

Perfect Foresight 136.24 108.76 182.35 13.25 126.36 146.08

Stochastic 138.70 112.98 190.83 13.34 128.80 147.11

Unsuspecting 139.91 110.68 200.09 13.19 127.26 148.15
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Table 5: Carbon pricing scenario Summary

Failure rate -50% CO2 fail probability Coal production

Perfect Foresight 0.04% 0.77 5.81%

Stochastic 0.04% 0.77 4.66%

Unsuspecting 0.07% 0.77 5.85%

Carbon target. Figure 2 shows a significant difference in investment strategies. To

ensure reaching the Carbon target even in unfavorable scenarios such as high demand or

low renewable production, SP doubles its investment in wind power plants compared to

the FP and UP (75%). Consequently, on average, more than 80% of the production is

renewable in 2030. In contrast, FP increases gas capacity to hedge against higher demand.
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Figure 2: Installed capacity by technology (Carbon target)

As a result of this significant investment in renewable energy, the SP’s average NPV

is almost 100 Bn e higher than the FP and UP’s NPVs (Table 6).
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Table 6: Carbon target scenario: Distribution of Net Present Values

Average Net Present Value (Billion euros)

Mean Min Max Std. Q0.25 Q0.75

Perfect Foresight 151.23 53.64 259.89 50.29 132.48 158.04

Stochastic 245.47 236.19 263.50 6.44 240.56 249.16

Unsuspecting 157.02 142.69 188.08 10.86 147.99 163.27

However, despite the direct specification of legal constraints on carbon emissions, Table

7 shows that the carbon target was missed in 15% of simulations for the UP, whereas SP

always reached it. Table 7 also shows that without a direct carbon tax, coal marginal

cost can be lower than gas marginal cost. As a consequence, the share of coal production

is above 15% for FP and UP, and aound 10% for UP.

Furthermore, due to the high share of renewable production, Table 8 shows that SP

decreases significantly more carbon emissions than both FP and UP, with an average of

73% reduction against less than 56%. Hedging strategy against low renewable production

led to almost full decarbonization of the electricity mix when the simulation was more

favourable.
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Table 7: Carbon target scenario Summary

Failure rate -50% CO2 fail probability Coal production

Perfect Foresight 0.03% 0 16.01%

Stochastic 0.03% 0 9.63%

Unsuspecting 0.06% 0.15 15.34%

Table 8: Carbon target scenario: Distribution of Carbon emissions

Distribution of CO2 emissions (% reduction from 2021)

Mean Min Max Std. Q0.25 Q0.75

Perfect Foresight -54.96 -58.96 -52.96 1.91 -56.32 -53.03

Stochastic -73.34 -89.85 -53.06 9.96 -76.14 -72.66

Unsuspecting -56.82 -81.79 -34.86 12.36 -60.35 -53.02

Renewable targets. Because of the optimistic expectation of renewable production,

the UP does not invest in more gas capacities at all. The SP and FP invest, but less than

the carbon price scenario.

Without the carbon price, there is no incentive to transition from coal to gas produc-

tion. As a result Table 9 shows the average share of coal production is still above 18% for

the three scenarios.
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Table 9: Renewable target scenario Summary

Failure rate -50% CO2 fail probability Coal production

Perfect Foresight 0.03% 0.15 18.58%

Stochastic 0.04% 0.15 18.56%

Unsuspecting 0.07% 0.15 18.62%

5 Discussion

In our framework, we observe that the NPV ranges produced by the stochastic approach

(SP) are proximal to the outcomes realized under perfect foresight, outperforming the re-

sults produced by the UP approach for the majority of policy scenarios considered. This

finding lends support to previous research and implies that the SP approach is more opti-

mal. The SP approach adopts a hedging behavior through over-investing in power plants.

This strategy entails the construction of power plants in excess of average requirements,

allowing the SP approach to anticipate potential negative outcomes in the future such as

suboptimal renewable energy production or higher-than-anticipated demand. Notwith-

standing the additional expenditure, this strategy serves to reduce the failure rate when

confronted with “bad news” shocks. Conversely, the UP approach underinvested in power

plants, resulting in increased costs when faced with such shocks.

The implementation of the direct carbon target policy has engendered considerable

investments in renewable energy sources by the SP, thereby ensuring ample production

to satisfy the demand sans resorting to fossil fuel power plants. As a result, the NPV

has doubled, constituting the sole instance in which the UP approximated the optimal

NPV. Nevertheless, in 15% of the simulations, the UP failed to achieve the carbon target,

whereas the SP and PF consistently fulfilled it. This disparity can be ascribed to the
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NPV calculation’s omission of the costs of non-compliance with the policy. Thus, it is

imperative to integrate the cost of non-compliance or exhibit vigilance towards possible

extreme shocks that could deviate from the policy’s course during the implementation of

a direct carbon target policy.

We have found that a carbon price is a potent instrument in reducing the usage of coal,

regardless of the planning strategy employed. However, we have observed that our frame-

work has led to a greater reliance on gas power plants, as we have invested significantly

more in them under the Strategic Plan (SP). Our decision was motivated by the desire

to decrease production costs, as gas emits only half the amount of emissions compared to

coal. Additionally, we took into consideration the possibility that the installed renewable

power may not suffice in case of a high demand shock.

Despite the specified carbon price following the trajectory set by the International

Energy Agency (IEA), we have noticed that it has not been sufficient in deterring the

utilization of fossil fuels and encouraging the transition to renewable energy production.

To address this matter, we intend to conduct a sensitivity analysis in the future.

But relying on gas has a drawback: because of gas price uncertainty, the final NPV

is also highly uncertain. In case of gas price extreme upward shock, coal can become

cheaper even with a high carbon price. Therefore if the policy objective is to reduce

carbon emissions, this should be taken into account especially in light of the skyrocketing

prices experienced in Europe in 2022.

In the end, although prioritizing investments in renewable energy sources showed

promise, it failed to effectuate a complete transition from coal to gas in the context

of remaining energy production. Notwithstanding, the judicious management of these in-

vestments effectively curtailed the impact of any ambiguities or variances that may have

arisen in relation to the three approaches under consideration.

The results of our framework should be interpreted with caution, as several limita-

tions may constrain the validity of our findings. Notably, we did not incorporate storage

technologies or Demand Side Management (DSM) systems, such as smart grids, which

could reduce the uncertainty associated with renewable energy production and electric-

ity demand, thereby diminishing the attractiveness of gas power plants for controllable

production. However, the addition of these technologies would also augment the complex-

ity of the computation and introduce new sources of uncertainty. Moreover, there is no
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guarantee that storage will play a crucial role in the energy transition before 2030 (IEA,

2022).

Our model would benefit from several refinements. Specifically, our results reflect

a central planning perspective, which is consistent with government reports on energy

transition planning. However, future work should explore the impact of uncertainty within

a competitive market framework. Additionally, the representation of the future remains

simplistic and would benefit from enhancements such as introducing path dependency or

increasing the likelihood of extreme shocks.

6 Conclusion

In this paper, we propose a stochastic approach for optimizing capacity expansion planning

problems. Our approach has been shown to be more economically efficient on average than

deterministic strategies, although it may require overinvestment in installed capacity that

is not always utilized. Nevertheless, deterministic planning strategies may overlook the

higher failure costs associated with incorrect anticipations of future renewable energy

production or electricity demand.

Failing to consider future uncertainties risks non-compliance with legal emission tar-

gets. Ensuring compliance with these policies may require overinvestment, resulting in

significantly higher costs. To reduce the volatility between planning strategies and simula-

tions, more ambitious renewable energy targets can be set. However, to effectively reduce

carbon emissions, a carbon price is still necessary to incentivize the transition from coal

to gas-fired generation and to manage the intermittency of renewables in the absence of

storage. Yet, a policy based solely on carbon pricing may be insufficient to stimulate

investment in renewables, which is crucial for mitigating gas price shocks.

Our future work will concentrate on introducing a market framework and analyzing

its interactions with various sources of uncertainty. Nevertheless, our findings underscore

the importance of considering uncertainty in policy-making to accomplish the energy

transition.
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