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Abstract

Using the TVP-SVAR-SV analysis, this paper studies the effect of economic
policy, financial, and geopolitical uncertainties on European carbon prices and
efficiency at different time horizons and different time points. Based on the
European carbon market data from January 2016 to October 2022, we con-
sider three key events: The Brexit crisis, COVID-19, and the Russo-Ukrainian
war. Moreover, we apply a structural threshold vector autoregressive (TVAR)
model to study the asymmetric responses of carbon prices and corporate car-
bon efficiency to uncertainty shocks under different regimes. Our findings
show; Firstly, economic policy uncertainty (EPU) and financial uncertainties
(FSI) negatively impact the European carbon market more than geopoliti-
cal uncertainty (GPR). Secondly, significant events and crises increase the
negative impact of uncertainty shocks on carbon prices and corporate carbon
efficiency. Thirdly, we found that the impact of EPU, FSI, and GPR shocks on
carbon prices and corporate carbon efficiency significantly differs across high
and low regimes. For robustness, our findings are generally robust using both
daily and weekly data. Our aim is to provide helpful insight for policymakers,
investors, and European companies.

Keywords: SUncertainty, Carbon prices, carbon efficiency, time-varying
SVAR-SV, Structure threshold VAR.



1 Introduction

The recent amplification of climate change, due to a rise in global warming gases, is
a fact that severely affects both human health and economies. Temperature hikes
are preceded by extreme meteorological conditions, including sea level rise, high risk
of catastrophic flooding, periods of drought, storms, and wildfires, which are getting
more severe and regular and threatening the world on a massive scale. In the face of
global warming and increasing serious greenhouse gas emissions, the vision of carbon
neutrality has grown stronger. Several countries have taken action to combat climate
change and steer capital flows into greener technologies, announcing successively the
goal of carbon neutrality, and sparking a wave of global carbon reduction initiatives.

Among European Union climate change policies, the EU Carbon Emission Trading
System ETS is considered a critical component of regulating and mitigating the
emission of greenhouse gases through the use of market mechanisms (Bing et al.,
2015). Over the course of many years, the European Emission Trading System has
been through four key commitment phases1, which have all shown an important in-
crease in terms of supporters number, trading volume, liquidity, and flexibility in the
European carbon market. Nowadays, it is the world’s largest carbon market using
the cap-and-trade trading system (Ibikunle et al., 2016) and has considerably con-
tributed to the reduction of carbon emissions in Europe (Ibikunle et al, 2016; Karpf
et al, 2018). Many studies have found that the EU ETS affects electricity prices by
changing the additional cost of generating power (Kara et al., 2008; Zachmann and
Hirschhausen, 2008), influencing power-producing companies’ profits and investing
in limiting emissions (Bonenti et al., 2013). Furthermore, researchers believe that
the establishment of the carbon market plays a consequential and powerful role in
supporting the expansion of the renewable energy industry as new energy gradually
replaces traditional energy (Hobbie et al., 2019).

However, recently, the price volatility of EUAs has been varying in parallel with
the carbon market’s quick expansion. Therefore, the realization of the EU’s emis-
sion reduction targets will be directly impacted by the severity of the carbon price’s
fluctuations since it is the primary driving force behind the operation of an emis-
sions trading system, which is not advantageous for the sustainable development of
society (Fleschutz et al. 2021). According to Dou et al. (2022), unstable carbon
prices affect carbon market performance, potentially reducing the impact of carbon
emission reductions. Furthermore, significant changes in the value of carbon assets
could stimulate speculative activity within the carbon market, increasing carbon
price volatility. As a result of this vicious cycle, carbon prices will continue to de-
viate from the market’s primary supply and demand levels, which is not ideal for
the market’s efficient operation. Regarding this matter, it is crucial to investigate
factors that influence carbon prices to keep a reliable system for pricing carbon

1The project consisted of four phases. Phase I, which was the pilot period, took place between
2005 and 2007. Phase II, which covered the full operation, took place between 2008 and 2012.
Phase III, which focused on the ”Climate Change Package 2020,” occurred from 2013 to 2020.
Currently, phase IV is in effect, and it spans from 2021 to 2030.
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assets, and ultimately establish a successful carbon market. Overall, the drivers of
carbon prices are complex and interconnected, and understanding them is important
for developing effective strategies to reduce greenhouse gas emissions. In line with
this, researchers have investigated the factors that affect carbon price fluctuations,
including the macroeconomic outlook, energy use, oil, coal, and electricity prices
(e.g., Hammoudeh et al., 2014; Zhu et al., 2019; Zheng et al., 2021). Nevertheless,
a larger body of research has concentrated on the influence of factors related to
policies as an element in the pricing mechanism of carbon trades, contending that
the impacts of policy may even exceed the influence of economic factors (Wang and
Guo, 2018; Zhu et al., 2019). The theoretical explanations of Christiansen et al.
(2005) that link carbon prices to policy regulation measures are confirmed by Benz
and Trück’s (2009) demonstration, proving that modifications to rules or policies
can result in abrupt increases in carbon prices.

Despite the extensive literature on carbon price drivers, the effect of uncertainty
on the carbon market and corporate carbon efficiency remains largely unexamined.
Our research fills the gap in the relationship between uncertainty and the European
Carbon market by exploring, for the first time, the time-varying response of the spot,
future1, future4, and future6 carbon prices and corporate carbon efficiency index in
the European market to different uncertainty indexes. In reality, the management
of carbon market risk is crucial for firms to improve their carbon emission efficiency
and mitigate associated risks. Hence it is important to examine the reaction of
corporate carbon efficiency to uncertainty shocks. This study enriches the existing
literature with several important contributions.

Firstly, the present study includes three types of uncertainty; EPU, financial stress
index, and geopolitical uncertainty. In Fact, after the construction of the economic
policy index (EPU) by Baker et al. (2016), researchers, investors, and policymakers
become all interested in how political and economic instability affects economic ac-
tivity (Bloom, 2009; Castelnuovo and Tran, 2017; Moore, 2017). A few years later,
the concept of uncertainty is regarded as a fundamental principle when analyzing
the changes and patterns in global economic growth (Dai et al., 2021b; Foglia and
Dai, 2021). In addition to the economic development impact of EPU, it has been
proved that EPU influences financial assets such as crude oil, gold, stock, and green
assets (Karnizova and Li, 2014; Ko and Lee, 2015; Li et al., 2020; Su et al., 2021a;
Sun et al., 2021). Since the carbon market is a financial asset, examining the ef-
fects of EPU on carbon price volatility and corporate carbon efficiency is essential.
To date, limited studies investigated the relationship between EPU and European
futures carbon prices (Gao et al., 2023, Dou et al., 2022, Ye et al., 2021). They
confirmed that EPU can affect the European carbon market.
Besides the environmental impact of EPU, financial market uncertainty might influ-
ence the carbon market (Yuan et Yang., 2020). In fact, it is reasonable to suppose
that there is a constant link between carbon market efficiency and financial market
uncertainty due to the critical position that financial markets play in representing
economic growth. According to Bloom (2009), uncertainty in the financial market is

3



not only clearly different from other uncertainties but also extremely interconnected
with the real economy. In their research, Yuan and Yang (2020) examined how the
uncertainty in the financial market is linked to the carbon market, by analyzing the
uncertainty of the stock market and crude oil market. Their findings confirmed the
existence of significant risk spillover from the stock market and crude oil market
uncertainty to the carbon market. As a result, the goal of our research is to shed
more light on the impact of financial market uncertainty shocks on carbon prices
and carbon efficiency using the OFR Financial Stress Index (OFR FSI) which incor-
porates five categories of indicators: credit, equity valuation, funding, safe assets,
and volatility.
Moreover, geopolitical uncertainty becomes among the most significant elements in
determining investment strategies, along with EPU and financial uncertainty (Ding
et al., 2021). Investor panic during extreme geopolitical risk events can result in
abnormal market fluctuations, ultimately impacting returns and market volatility
(Tiwari et al., 2021). Furthermore, geopolitical developments offer possibilities for
significant changes in governmental strategy which impact investors’ behavior in the
financial market (Asai et al., 2020). Given that geopolitical risk influences changes
in oil prices through supply and demand channels (Demirer et al.2019), if there is
an initial positive effect on the price of carbon allowances due to a rise in crude
oil prices, it is possible that GPR could have a substantial impact on carbon prices
(Hammoudeh et al.2014). Although the important effect of geopolitical risk, the
relationship between geopolitical uncertainty and the European carbon markets has
not been studied. To our knowledge, no previous study has explored the responses
of spot and futures carbon prices and corporate carbon efficiency to geopolitical
uncertainties, which complements the current research on the effect of uncertainty
on the carbon market.

Secondly, the relationship between uncertainty and fluctuations in carbon prices
and carbon efficiency is anticipated to change over time in response to each sig-
nificant event since unprecedented pandemics and financial crises increased risks,
uncertainties, fear, and volatility in financial markets. Thus, the second contribu-
tion that this paper brings to the current body of literature is using the Bayesian
TVP-SVAR-SV model to study the impact of EPU, GPR, and financial uncertainty
on carbon prices and carbon efficiency in a time-varying framework during three
different significant events. In fact, shocks and crises have long been recognized as
major drivers of political processes by political scientists. The ”multiple streams”
hypothesis, which proposes that policy change happens when perceptions of issues,
solutions, and politics converge around specific legislation, is one of the most often
used ideas for explaining when and why certain policies change. The so-called ”fo-
cused event” is a high-profile event that draws people’s attention and forces them
to focus on a particular dimension of a particular problem and a major component
in the policy-making approach. Extraordinary events may also have an impact on
politics and governments. As a result, these shocks might open up a ”window of
opportunity” for policymakers to address an issue that has been present for some
time. Our study offers a new dynamic perspective for analyzing changes in the prices
of carbon and corporate carbon efficiency by considering the differences in effects at
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various time points. As part of the identified key events, we consider the changes in
the underlying structure caused by the recent Russo-Ukrainian crisis, Covid-19, and
Brexit crisis. Dou et al. (2022) explored the linkage between EPU and the carbon
future market before and after covid19. Their results confirm that the pandemic
outbreak has an impact on the spillover and interdependence of EPU and carbon
futures price return by affecting their short- and medium-term performance. This
raises the question about the impact of significant events on the relationship between
uncertainty and the carbon market. To fill this gap in the literature, our paper is the
first study that reveals the time-varying response of carbon spot and futures prices
and corporate carbon efficiency to EPU, financial uncertainty, and GPR during the
Brexit crisis, covid19, and the Russo-Ukrainian crisis..

Thirdly, we use the structural threshold VAR model (STVAR) of Balke (2000) to
examine the contemporaneous relation between the European carbon market and
uncertainties spanning two regimes. Evidence from prior research shows a nonlinear
link between uncertainty and the Chinese carbon market (Li et al, 2022, Zhang et
al,2021). Furthermore, such an effect might be explained by changes in financial
market conditions. Unfortunately, little attention has been devoted to the varying
asymmetric impact of uncertainty on the European carbon market, and researches
on this subject is still restricted to a few working papers (Gao et al,2023; Yuan et
al,2020). To this, our study analyzes the varying effects of EPU, FSI, and GPR
shocks on carbon price and corporate carbon efficiency across different uncertainty
regimes. Overall, our study contributes to the literature by employing a TVAR
model to explore the threshold impact that is induced by changes in uncertainty
situations. To the best of our knowledge, this is the first study to examine the
asymmetric impact of EPU, FSI, and GPR on carbon pricing and corporate carbon
efficiency over different regimes.

This paper is structured as follows: Section 2 outlines the methodology and data
used, Section 3 details the empirical results, Section 4 presents the robustness tests,
and Section 5 summarizes the policy implications and conclusions.

2 Methodology

2.1 Construction of the TVP-SVAR-SV model

In most research examining the impact of uncertainty shocks on financial and com-
modity markets, the vector autoregression (VAR) or structural vector autoregres-
sion (SVAR) techniques with constant coefficients have been utilized (Bakas and
Triantafyllou, 2018; Ding et al, 2021). The economic structure and the impacts
of uncertainty shocks on the commodity market are both implicitly assumed to be
constant in such models. However, the impact of uncertainty shocks varies based
on macroeconomic circumstances and is not constant due to the complexity of the
current global economic situation (Lyu et al., 2021). External shocks like financial
crises or significant unpredictable events can cause structural changes in the finan-
cial sector and the economy as a whole (Nasir et al., 2018, Nasir et al.,2019).
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To better represent the changing effects of explanatory factors and to account for
possible modifications in the structural relationships, we enhance the SVAR model
by introducing time-varying parameters. We expand on Primiceri (2005) multivari-
ate time-varying parameter vector autoregressive (TVP-VAR) model by including
random time-varying volatilities inspired by Omori et al. (2007) and Nakajima
(2011) innovations. Thus, the heteroskesticity property of structural innovations as
well as the time variation of the simultaneous transmission of uncertainty shocks to
carbon spot/futures price and carbon efficiency are both expected to be detected
by our TVP-SVAR-SV model. These characteristics enable us to develop multiple
insights into the effects of various uncertainty shocks on the carbon market over
time. The SVAR model used in this paper is expressed as follows :

Ayt = F1yt−1 + . . .+ Fsyt−s + µt, t = s+ 1, . . . , n (1)

where yt is a k × 1 vector of observed variables. For instance, the vector yt =
(∆uncertaintyt,∆carbon pricest,∆Car eff t) is used to investigate the impact of
uncertainty (TEU or FSI or GEO) on the carbon prices (spot or futures1 or futures4
or futures6) and corporate carbon efficiency. Our empirical strategy consists of an-
alyzing the response of carbon prices and corporate carbon efficiency to different
uncertainty types (TEU or FSI or GEO). We also take into account multiple carbon
price measures (spot or futures1 or futures4 or futures6).
The F1, . . . , Ft and A denote the 3 × 3 matrices of the coefficients and µt represents
a 3 × 1 column vector of structural shocks, where

A =


1 0 . . . 0

a21
. . .

...
...

. . . 1
ak1 . . . akk−1 1

 (2)

The reduced form of the SVAR model in Eq. (1) is given by :

yt = B1yt−1 + . . .+Bsyt−s + A−1
∑

εt = Xtβ + A−1
∑

εt (3)

Where β is the (k2s × 1) vector derived from Bi. Xt = Ik ⊗ (yt−1, . . . , yt−i), where
⊗ denotes the Kronecker product. Based on a consistent literature body, we set
the following variables order to identify the structural shocks; indeed, according to
Baker et al. (2016), and Huang and Luk (2020), uncertainty variables are placed in
the first order assuming that uncertainty shocks (emanating from economic policy
or financial stress or geopolitical risk) are supposed to have an immediate impact
on carbon price and carbon efficiency, while non-uncertainty shocks cannot immedi-
ately affect uncertainty. In addition, by placing carbon efficiency variable in the last
order we assume that carbon efficiency instantly react to uncertainty and carbon
price shocks, while the reverse does not hold true.
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If we introduce a stochastic volatility (SV) process into the Eq.(3), we can express
the TVP-SVAR-SV model as follows:

yt = Xtβ1 + At
−1

∑
t

εt, t = s + 1, · · · , n (4)

As noted by Primiceri (2005) and Nakajima et al. (2011), the parameters are pre-
sumed to conform to a random walk process described as follows:
βt−1 = βt + µβt

αt+1 = αt + µαt

ht+1 = ht+ µht

Where t = s + 1, . . . , n, βs+1 ∼ N(µβ0,
∑

β0 ), αs+1 ∼ N(µα0,
∑

α0), hs+1 ∼
N(µh0,

∑
h0)

and


ϵt
µ
µ
µht

 ∼ N

0,


I 0 0 0
0

∑
β 0 0

0 0
∑

α 0
0 0 0

∑
h




where
∑

β,
∑

α, and
∑

h are assumed to be diagonal matrices.

To estimate the TVP-SVAR-SV, we utilize Bayesian inference and carry out the
estimation process with the Markov chain Monte Carlo (MCMC) technique. The
Markov Chain Monte Carlo (MCMC) method, which is based on the entire set of
available data, can offer smooth estimates of the parameters of interest. Therefore,
in the context of Bayesian inference, we adopt the MCMC simulation algorithm to
estimate the TVP-SVAR-SV model (Koop et al., 2009). We use the Gibbs sampling
algorithm to obtain 10000 samples after discarding the first 1000 as burn-in in order
to obtain valid samples from the estimated posterior (Primiceri, 2005).

2.2 Data and preliminary analysis

We analyze data from January 2016 to October 2022, encompassing a range of sig-
nificant global financial market events, including the Brexit crisis, the United States
departure from the Paris Agreement, trade conflicts between the US and China, and
the COVID-19 pandemic, and the Russo-Ukrainian war.
Our data was extracted from several distinct sources. Starting with carbon prices,
we used spot, futures 1, futures 4, and futures 6 carbon prices (car pri spot, car pri
1, car pri 4, and car pri 6) from the Thomson Reuteurs database. We utilized the
SP Europe 350 Carbon Efficient Index from the Dow Jones database for corporate
carbon efficiency (Car Eff). This index is intended to assess the performance of com-
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panies in the SP Europe 350 by assigning greater or lesser weightings to companies
with lower or higher carbon emissions per unit of revenue. Regarding uncertainty
indexes, our paper selects multiple types of uncertainty to analyze from a broader
perspective. Firstly, we utilized the Twitter-based Economic Uncertainty (TEU) in-
dex, which measures the number of daily English tweets containing uncertainty and
economy-related terms. This index, extracted from the Economic Policy Uncertainty
website, generally reflects the level of economic policy uncertainty. Secondly, to mea-
sure financial uncertainty, we used the Financial Stress Index (FSI) from the Office
of Finance Research database which incorporates five categories of indicators: credit,
equity valuation, funding, safe assets, and volatility. The Financial Stress Index pro-
vides a daily assessment of stress in worldwide financial markets based on market
indicators such as interest rates, valuation measures, and yield spreads. This index,
developed by the Office of Financial Research (OFR), yields a positive value when
stress levels exceed the average, and a negative value when stress levels are below av-
erage. Lastly, our study includes the Geopolitical Risk Index (GEO) developed by
Caldara and Iacoviello (2022) (https://www.matteoiacoviello.com/gpr.htm). The
GPR index is based on a text-search algorithm that takes into account 11 top news-
papers in the United States, United Kingdom, and Canada. Hence, the index is
built by tracking publications that contain phrases like ”war,” ”military,” ”geopoli-
tics,” ”terrorist,” and other comparable terms. According to Caldara and Iacoviello
(2018), the GPR index captures events that are exogenous to business and financial
cycles better than the EPU index. This newly formed index is better than other
individual indicators since it incorporates terrorism, political conflicts, and wars into
a single measure. Furthermore, the index incorporates both present and expected
risks that are associated to geopolitical events, as determined by monthly media
data reports.

We employ the Kapetanios (2005) unit root test with structural breaks to examine
the integration properties of the variables, which appears to be appropriate when
taking into account structural changes impacting the stationarity of the underlying
components. The results of the unit root tests with multiple structural breaks are
presented in Table 1. As we can notice from Table 1, the results indicate that all
the considered variables are found to be stationary in first difference. The graph in
Fig. 1 shows how the carbon price and carbon efficiency change in relation to TEU,
FSI, and GEO. It is evident that carbon efficiency and carbon price are linked to
uncertainty indexes.

3 Empirical results

3.1 Estimation of selected parameters

Based on Akaike’s information criterion (AIC) and the Hannan-Quinn information
criterion (HQ), We set the lag length to 1 when estimating our TVP-SVAR-SV
model. Table 2 provides a summary of the estimated results for the chosen param-
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Table 1: Table 1. Kapetanios (2005) unit root tests with structural breaks.

Level 1st Diff

k=1 k=2 k=3 k=1 k=2 k=3

Carbon Eff -3,22018 -3,22541 -3,51984 -9,18422*** -9,18422*** -9,18422***
2020:10:00 2017:05:00 2017:05:00 2020:03:00 2018:12:00 2017:08:00

2020:10:00 2019:01:00 2020:03:00 2018:12:00
2020:10:00 2020:03:00

Car pri (Spot) -2,63806 -3,1581 -3,30584 -9,17919*** -9,47068*** -9,47068***
2021:08:00 2020:02:00 2018:02:00 2020:05:00 2017:12:00 2017:12:00

2021:08:00 2020:02:00 2020:05:00 2019:02:00
2021:08:00 2020:05:00

Car pri (Futures1) -2,64668 -3,1412 -3,28453 -9,16062*** -9,44674*** -9,44674***
2021:08:00 2020:02:00 2018:02:00 2020:05:00 2017:12:00 2017:12:00

2021:08:00 2020:02:00 2020:05:00 2019:02:00
2021:08:00 2020:05:00

Car pri (Futures4) -3,12219 -3,12219 -3,12219 -8,79027*** -9,01827*** -9,01827***
2021:08:00 2020:02:00 2018:02:00 2020:11:00 2017:12:00 2017:12:00

2021:08:00 2020:02:00 2020:11:00 2019:03:00
2021:08:00 2020:11:00

Car pri (Futures6) -3,30085 -3,90166 -4,12737 -8,43219*** -8,43219*** -8,43219***
2020:07:00 2018:02:00 2018:02:00 2021:02:00 2017:12:00 2017:12:00

2020:07:00 2019:04:00 2021:02:00 2019:12:00
2020:07:00 2021:02:00

TEU -3,85303 -3,85303 -3,85303 -8,93669*** -8,93669*** -8,93669***
2020:07:00 2019:04:00 2017:04:00 2020:05:00 2020:05:00 2019:01:00

2020:07:00 2019:04:00 2021:08:00 2020:05:00
2020:07:00 2021:08:00

FSI -4,69709 -4,69709 -4,69709 -7,50817*** -7,55411*** -7,55411***
2020:07:00 2019:05:00 2018:01:00 2020:05:00 2018:12:00 2017:04:00

2020:07:00 2019:05:00 2020:05:00 2018:12:00
2020:07:00 2020:05:00

GEO -4,94584 -5,22746 -5,24837 -9,54706*** -9,54959*** -9,56935***
2021:05:00 2020:01:00 2017:09:00 2021:07:00 2018:02:00 2018:02:00

2021:05:00 2020:01:00 2021:07:00 2020:04:00
2021:05:00 2021:07:00

Note: Car Eff, Car pri, TEU, FSI, and GEO refer respectively to corporate carbon efficiency,
carbon price, Economic policy uncertainty, financial uncertainty, and geopolitical uncertainty
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Figure 1: Evolution of carbon price and carbon efficiency as functions of uncertainty.

eters, including posterior means, standard deviations, intervals of 95% confidence,
diagnostic statistics for Geweke convergence, and inefficiency. These findings demon-
strate that the parameter estimates’ posterior means are within the 95% confidence
interval. The results suggest that there is no evidence of rejecting the null hypothesis
of convergence to the posterior distribution for all parameters at a significance level
of 5%, according to Geweke statistics. Additionally, almost all parameters have very
low inefficiency factors. The posterior draws are efficiently produced by the MCMC
algorithm.
The sample autocorrelations, sample paths, and posterior densities are shown in
Fig.2. We discover that sample autocorrelations rapidly decrease and that sample
paths typically remain stable. The findings suggest that posterior samples are ef-
fectively generated through the use of the MCMC sampling method.

3.2 Stochastic volatility estimation

Fig.3 shows the dynamics of the estimated stochastic volatilities of the structural
shocks originating from our variables as time progresses σit 2 = exp(hit), based
on the posterior mean and 95% credible intervals. This figure demonstrates how
volatility varies significantly over time, supporting the use of the TVP-SVAR model
with stochastic volatility to prevent biased estimation given the importance of pos-
terior estimates of stochastic volatilities.
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(a) TEU-Spot (b) FSI – Spot (c) GEO – Spot

(d) TEU - Futures1 (e) FSI - Futures1 (f) GEO - Futures1

(g) TEU - Futures4 (h) FSI - Futures4 (i) GEO - Futures4

(j) TEU - Futures6 (k) FSI - Futures6 (l) GEO - Futures6

Figure 2: Sample autocorrelation, sample paths, and posterior densities for selected
parameters
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Three significant dates—2016, 2020, and 2022—as well as cyclical ups and downs are
depicted on the plots of each estimated stochastic volatility. Starting with TEU, we
note periods of high volatility in 2016, which reflects the Brexit crisis, 2020, which
aligns with the time frame of the COVID-19 outbreak, and early in 2022, during the
Russo-Ukrainian war. Additionally, fig.3 shows a high level of FSI volatility in 2020
and a slight increase in volatility in 2022. We discovered a significant increase in
GEO stochastic volatility in 2022, which reflects the effect of the Russo-Ukrainian
crisis on geopolitical uncertainty. These results encourage us to investigate the time-
varying effect of uncertainty during the Brexit crisis, Covid19 pandemic, and the
Russo-Ukranian war. Moreover, our findings demonstrate that the volatility shocks
caused by economic, financial, and geopolitical uncertainty are not always the same
over time, which supports the use of three different uncertainty indexes in our study.

Regarding carbon price and carbon efficiency, our analysis revealed that the trend
patterns and cyclic fluctuations of carbon spot, futures 1, and futures 4 prices’
stochastic volatilities exhibit similar trajectories. Furthermore, compared to Covid19
pandemic, a higher level of volatility is reached during the Brexit and the Russo-
Ukrainian crisis. This might be explained by the fact that these two crises are very
related to the European carbon market. For corporate carbon efficiency stochastic
volatility, the results confirm generally high volatility during 2016, 2020, and 2022.
In addition, according to Fig. 3, carbon spot and futures prices are relatively stable
during Phase III and Phase IV, except, in 2016, 2020, and 2022. The stability of
the European carbon market is not only limited to carbon spot and futures prices
but also to the stochastic volatility of the corporate carbon efficiency index. Our
analysis provides guidance for investors and policy-makers to avoid the volatility of
the European carbon market, especially during high uncertainty periods.
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(a) TEU - Spot - CarEff (b) TEU - F1 - CarEff

(c) TEU – F4 – CarEff (d) TEU – F6 – CarEff

(e) FSI – Spot – CarEff (f) FSI – F1 – CarEff

(g) FSI – F4 – CarEff (h) FSI – F6 – CarEff

Figure 3: Posterior estimates for stochastic volatility of structural shocks (Spot and
Futures prices)
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(i) GEO – Spot – CarEff (j) GEO – F1 – CarEff

(k) GEO – F4 – CarEff (l) GEO – F6 – CarEff

Figure 3: Posterior estimates for stochastic volatility of structural shocks (Spot and
Futures prices) (continued)

3.3 Time-varying impacts of uncertainty shocks on carbon
price and carbon efficiency at different time horizons

Fig. 4 displays the time-varying reactions of carbon spot and futures price, as well as
corporate carbon efficiency, to TEU, FSI, and GEO. The short-, medium-, and long-
term reactions should, in order, be reflected through the impulse responses observed
at 1-month, 3-month, and 6-month intervals. Each variable’s standardized response
to shocks is shown on the vertical axis, while the horizontal axis shows the number
of months following a shock. Given that our empirical model is time-varying, the
impulse responses must be constructed using the estimated time-varying coefficients
at every point in time during the sample period. In order to compute the impulse
responses, Nakajima et al. (2011) recommend that the initial shock size be set to
be equal to the time-series average of stochastic volatility over the sample period,
followed by the use of simultaneous relations at each point in time.
As shown in Fig. 4, the effect of TEU, FSI, and GEO shocks on carbon prices
and carbon efficiency varies over time. We notice that generally spot and different
futures carbon prices react similarly to different uncertainty shocks.

Beginning with TEU, the response of spot and futures carbon prices to a shock
in economic policy uncertainty is mostly negative but there are substantial differ-
ences with different lag periods. For the short term, we detect a negative impact of
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TEU shocks on carbon spot, futures1, futures4, and futures6 prices from 2016 until
2022, by contrast, the impact is mostly positive from 2022. Moreover, the response
is slightly negative, especially during 2022 in the medium-term, but almost negligi-
ble in the long-term. Our result, for the short-term impact, is confirmed by Gao et
al (2023) who studied the impact of EPU on China and European carbon futures
prices. According to them, because of the growing level of uncertainty, the economic
foundations in the future are expected to decline, production will decline, and prices
for carbon emission allowances will also decline as a result. Nevertheless, the process
of financialization in the carbon emissions trading market has led to the emergence
of several financial market features. Increasing uncertainty means increased market
risk causing traders to reduce their financial asset holdings. As a result, there is less
demand for carbon emission allowances, which drives down prices. Furthermore, our
results imply that TEU shocks have a negative effect on corporate carbon efficiency
in the short term from 2016 to 2018. However, the response turns out to be positive
from 2018 to 2022 with a significant drop after the COVID-19 pandemic. These
findings are in line with the extremely fluctuating level of the Economic Policy Un-
certainty Index in 2019 and 2020, indicating that economic risks during the covid
crisis led to decreases in corporate carbon efficiency. In fact, Tee et al. (2023) ex-
amined how EPU affected corporate carbon footprint in 2019 and found that when
EPU was higher than average, there were fewer incentives for businesses to make
investments in the environment. As a result, rising EPU would encourage firms to
postpone comparable investments to survive. In conclusion, reducing investment
in renewable energy would increase CO2 emissions and influence corporate carbon
efficiency. Moreover, increased EPU discourages businesses’ desire to minimize pol-
lution through green behavior and innovation (Hou et al., 2022; Lou et al., 2022).
In general, rising EPU introduces higher risks and influences managers’ motivation
for innovative investment. As a result, there is a negative relationship between EPU
and corporate carbon efficiency. Nevertheless, the positive impact of TEU shocks
on carbon efficiency after 2018 might be explained by the fact that recently, the
climate change effect is more visible, investors are aware of the negative impact of
climate change and start paying more attention to corporate sustainability and car-
bon efficiency which encourage firms to reduce their carbon emission even during
high economic uncertainty. Also, for the medium term, we detect that TEU has a
marginally negative effect on corporate carbon efficiency, which is consistent with
the real options theory that holds that uncertainty at the national level discourages
companies from making long-term investments (e.g., investment in corporate sus-
tainability). The firm’s cash flows are unstable in uncertainty times, and because
green technology takes so long to develop, it is hard to predict future risks. Firms
may delay future investments in green technology until economic uncertainty sub-
sides because its expenses are significant and irreversible. Our result is confirmed
by Jia et al (2020).

We next conduct the time-varying impulse responses of carbon spot and futures
prices and carbon efficiency to FSI shocks. Regarding the impact of FSI shocks
on carbon spot and futures prices, the differences in the magnitudes of the fluc-
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tuations are evident. With a lag of 1 period, the responses of carbon prices to
FSI shock are mainly positive except in 2016, 2019, 2020, and at the beginning of
2022 which reflect respectively the Brexit crisis, the COVID-19 pandemic, and the
Russo-Ukrainian war. In fact, after a financial crisis, the effects of financial stress
on time variation in carbon market volatility became more evident. This suggests
that the carbon market is more vulnerable to financial market volatility and insta-
bility during periods of high uncertainty or crisis compared to periods of relative
stability or economic growth. These findings further confirm the procyclical nature
of the carbon market. Our findings support in part those of Ji et al. (2018) which
show that the dynamic correlations between carbon prices and financial instability
are mostly negative indicating that the price of carbon tends to decline as financial
uncertainty rises. According to economic theory, the carbon price rises when the
economy is strong and falls when the economy is weak (Jiao et al., 2018). However,
the magnitudes and the fluctuations of both spot carbon price and futures carbon
price are lower in lag2 and almost negligible in lag3 indicating the ability of the Eu-
ropean carbon market to absorb the negative impact of financial shocks and return
stable after a few months. Furthermore, our results confirm that corporate carbon
efficiency reacts, generally, positively to financial uncertainty shocks but negatively
only during the Sino-US trade disputes in 2018, the covid19 pandemic in 2019 and
2020, and the Russo-Ukrainian war in February 2022 and became negligible in the
medium and long term. These findings confirm that high financial stress and uncer-
tainty due to different crises lead managers and investors to invest in projects that
can generate profits at the expense of the environment and profit becomes their only
motive to invest, which, subsequently, affects negatively firms’ carbon efficiency.

The impact of GEO shocks on carbon prices (spot and futures) is mostly positive at
1- month and 3-month horizons except during the Russo-Ukrainian war. This result
is possibly due to the fact that oil and carbon markets are close substitutes. Given
that oil prices are acutely responsive to geopolitical uncertainty, carbon prices, which
demonstrate similar trends to conventional energy prices, could experience substan-
tial fluctuations in response to changes in levels of geopolitical risk. Also, as geopo-
litical risk rises, consumers of crude oil - a commodity highly susceptible to such
risk - tend to view renewable energy sources as a viable alternative to conventional
sources. This leads to an increase in energy and carbon prices. This causes growth in
energy prices and carbon prices. In addition, the negative impact during 2022 might
be caused by the Russo-Ukrainian war and explained by the fact that this crisis is
very related to the European market. Our results indicate also a positive impact
of GEO on the European corporate carbon efficiency index. Extreme geopolitical
events, such as political upheavals, terrorist attacks, and geopolitical risks, are taken
into consideration while making investing decisions. On the other hand, geopolitical
uncertainties might alter how investors perceive the future supply of oil, which would
modify oil prices and increase corporate carbon efficiency. According to Dutta et al
(2020), the motivation and interest in green investments will decline when the crude
oil market faces significant negative fluctuation. But, when oil prices rise due to a
high level of uncertainty, the incentives will rise as well, driving up the equity price
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of these kinds of green products (Bondia et al, 2016; Xia et al, 2019). Consequently,
due to the growth in GPR over the past few years, several firms start investing more
in renewable energy. Such initiatives are also reflected in corporate carbon efficiency.

(a) Uncertainty, spot carbon price, and
carbon efficiency

(b) Uncertainty, futures (1) carbon price,
and carbon efficiency

(c) Uncertainty, futures (4) carbon price,
and carbon efficiency

(d) Uncertainty, futures (6) carbon price,
and carbon efficiency

Figure 4: Impact of uncertainty shocks on carbon price and carbon efficiency at
different time horizons

3.4 The impact of uncertainty shocks on carbon price and
corporate carbon efficiency at different time points.

The impact of uncertainty shocks on carbon price and corporate carbon efficiency
at different time horizons confirmed structural changes following specific periods re-
lated to some major events during 2016, 2019, and 2022. Thus, to supplement the
dynamic impulse findings, we also conduct separate analyses for multiple time peri-
ods in order to examine changes in the impacts of uncertainties on carbon prices and
corporate carbon efficiency during various uncertainty-related events. We consider
three key events: The Brexit crisis in June 2016, the covid19 in April 2020, and
the Russo-Ukrainian war in February 2022. As indicated in fig3, the Brexit crisis
marks the starting of a boom cycle of EPU and the rise in carbon price volatility.
April 2020 marks the Covid pandemic, with high financial and economic policy un-
certainty reaching their highest levels. However, the recent Russo-Ukrainian in 2022
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war is closely related to high geopolitical risk.

As demonstrated in Fig.5, similarities are detected in the responses of the spot
and the three-futures carbon prices (futures1, futures4, and futures6) to the differ-
ent uncertainty shocks during the Brexit crisis, Covid19 pandemic, and the Russo-
Ukrainian war which confirm that generally, carbon spot and futures prices react
with the same way to TEU, FSI, and GEO shocks. We also observe that the effect of
the uncertainties shocks at different time points is found to be only significant for the
short term and negligible for the medium and long term confirming the results of Fig.
4. Moreover, fig.5 confirms that the negative immediate effects of Covid19 pandemic
in April 2020 lasted more than the other crisis, indicating that covid19 has a severe
effect on both carbon price and carbon efficiency. Global economic and financial
markets experienced an enormous change as a result of the recent COVID-19 pan-
demic outbreak (Hanif et al, 2021; Mensi et al, 2021). Risks, uncertainty, panic, and
volatility in the financial markets of developed and emerging economies all height-
ened as a result of this unprecedented pandemic catastrophe. The sharp increase in
confirmed cases forces governments to enact stringent containment measures, which
slow down economic growth significantly. These measures include suspending com-
mercial operations, isolating cities, limiting people’s activities, and social isolation.
Our result is confirmed by Dou et al (2022), who studied the relationship between
EPU and futures carbon prices and found that the short- and medium-term perfor-
mance of both EPU and carbon futures prices has been affected by the COVID-19
pandemic, which in turn has had an impact on the spillover and connectedness be-
tween them.

Regarding the Brexit crisis effect, we found a negative impact of uncertainty shocks
especially on carbon prices (spot and futures). The price of carbon emissions in
the EU has decreased since the Brexit news came, plunging more than 15%, to
€4.88 from its peak of surpassing €8 (The highest level since 2012). Following the
vote, the price of carbon decreased in part as a ”reflection of where all commod-
ity prices” had fallen, but it also did so as a result of traders’ anxiety about the
future of the ETS, who were previously buying and selling carbon permits. This un-
certainty resulted from ”the fact that the UK was a big player in the carbon market.

Lastly, we examined the impact of uncertainties on carbon prices and corporate
carbon efficiency during the Russo-Ukrainian war. Our results reveal significant im-
mediate negative responses of both carbon prices and corporate carbon efficiency to
TEU, FSI, and GEO shocks. Undoubtedly, the conflict between Russia and Ukraine
represents the most significant upheaval in Europe since World War II and has had
a considerable impact on financial markets worldwide. The consequences of the
conflict have already begun to affect the European clean markets. Santorsola et
al. (2022) claimed that the financial markets in Europe and the United Kingdom
were impacted by the crisis. Moreover, the global economy has been greatly affected
by the energy market fluctuations resulting from the geopolitical conflict between
Russia and Ukraine. This has caused significant disruption to both the world energy
and carbon price markets, leading to considerable difficulties in ensuring energy se-
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curity. Bedowska-Sójka et al. (2022) examined how current Russia-Ukraine tensions
affected financial markets. According to their results, the conflict disrupted the
link between asset prices and geopolitical risk. However, our results indicate that
the negative impact of uncertainty shocks on carbon prices and corporate carbon
efficiency starts to decrease after a few days and becomes positive. This might be
explained by the fact that the conflict between Russia and Ukraine is of crucial to
both energy and carbon markets due to Russia’s position as the world’s largest sup-
plier of oil and gas. It is worth noting that Europe depends on Russia for one-third
of its oil and gas needs. Also, the Russian traditional energy markets have increased
the desire for alternative sources of energy, the clean energy markets, which explains
the increases in carbon prices. Furthermore, firms that promote and implement re-
newable energy sources have been gaining investors since they take into account the
demand for alternative energy sources.

(a) Uncertainty, spot carbon price, and
carbon efficiency

(b) Uncertainty, futures (1) carbon price,
and carbon efficiency

(c) Uncertainty, futures (4) carbon price,
and carbon efficiency

(d) Uncertainty, futures (6) carbon price,
and carbon efficiency

Figure 5: Impact of uncertainty shocks on carbon price and carbon efficiency at
different time points

20



4 Robustness test

4.1 Daily and weekly data

To confirm the robustness of our findings, we use weekly and daily data of TEU,
FSI, GEO, carbon price, and carbon efficiency. For the carbon price, we use only the
carbon future1 price since the previous results confirmed a similarity in the reaction
of carbon spot and futures prices to different uncertainties shocks. Table 3 demon-
strates that the parameter estimates’ posterior means are within the 95% confidence
interval. The results suggest that, at the 5% level of significance, there is no evidence
to reject the null hypothesis that all parameters converge to the posterior distribu-
tion, according to Geweke statistics. Additionally, almost all parameters have very
low inefficiency factors. The posterior draws are efficiently produced by the MCMC
algorithm. According to Fig 6, the sample autocorrelations rapidly decrease and the
sample paths typically remain stable. The findings suggest that posterior samples
are effectively generated through the use of the MCMC sampling method.

Table 3: Estimation of selected parameters in the TVP-SVAR-SV model

Weekly Daily

Parameter Mean Stdev 95%U 95%L Geweke Inef. Parameter Mean Stdev 95%U 95%L Geweke Inef.

TEU TEU

(
∑

β)1 0.0205 0.0028 0.0159 0.0268 0.23 23.14 (
∑

β)1 0.0346 0.0062 0.0242 0.0481 0.844 184.99
(
∑

β)2 0.0245 0.0040 0.0181 0.0339 0.965 37.71 (
∑

β)2 0.0307 0.0038 0.0239 0.0382 0.118 107.39
(
∑

a)1 0.0326 0.0048 0.0252 0.0440 0.334 21.75 (
∑

a)1 0.0170 0.0012 0.0149 0.0197 0.073 49.42
(
∑

h)1 0.6217 0.0846 0.4622 0.7923 0.515 51.14 (
∑

h)1 0.6067 0.0449 0.5202 0.6957 0.208 73.79
(
∑

h)2 0.2735 0.0436 0.2002 0.3698 0.547 47.18 (
∑

h)2 0.4551 0.0346 0.3935 0.5297 0.219 51.80

FSI FSI

(
∑

β)1 0.0220 0.0034 0.0167 0.0302 0.895 21.43 (
∑

β)1 0.0140 0.0014 0.0116 0.0168 0.333 54.29
(
∑

β)2 0.0247 0.0041 0.0183 0.0345 0.092 24.97 (
∑

β)2 0.0200 0.0025 0.0160 0.0263 0.578 102.90
(
∑

a)1 0.0340 0.0050 0.0258 0.0451 0.358 24.89 (
∑

a)1 0.0209 0.0018 0.0178 0.0246 0.215 43.04
(
∑

h)1 0.5235 0.0757 0.3869 0.6807 0.384 35.88 (
∑

h)1 0.4531 0.0318 0.3945 0.5195 0.137 30.81
(
∑

h)2 0.2917 0.0461 0.2131 0.3927 0.487 60.30 (
∑

h)2 0.4186 0.0303 0.3601 0.4790 0.843 53.96

GEO GEO

(
∑

β)1 0.0207 0.0028 0.0159 0.0270 0.235 27.66 (
∑

β)1 0.0229 0.0030 0.0171 0.0289 0.115 101.01
(
∑

β)2 0.0246 0.0041 0.0179 0.0338 0.930 33.21 (
∑

β)2 0.0289 0.0044 0.0216 0.0381 0.039 124.07
(
∑

a)1 0.3904 0.0050 0.0256 0.0454 0.012 27.53 (
∑

a)1 0.0165 0.0011 0.0145 0.0189 0.000 29.10
(
∑

h)1 0.3904 0.0716 0.2630 0.5386 0.166 48.63 (
∑

h)1 0.3625 0.0305 0.3069 0.4257 0.019 53.89
(
∑

h)2 0.2898 0.0442 0.2131 0.3856 0.183 52.62 (
∑

h)2 0.4666 0.0392 0.3977 0.5536 0.749 63.45

Note: “mean” refers to the posterior means, “95%L”: 95% lower credible interval limit, “95%U”:
95% upper credible interval limit, “Stdev”: standard deviations, “Inef”.: inefficiency, and
“Geweke”: Geweke convergence diagnostics statistics.
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Figure 6: Sample autocorrelation, sample paths, and posterior densities for selected
parameters

The time-varying responses of the daily and weekly carbon price and corporate car-
bon efficiency to different uncertainties shocks are presented in Fig 7 and Fig 9. Our
results are robust and show a significant variation of the reactions of the carbon price
and corporate carbon efficiency to the three types of uncertainty shock over time.
However, the responses of the daily carbon price and corporate carbon efficiency
to uncertainties shocks at various time horizons change severely, are not constant,
and largely depend on the economic situation, confirming that the stability of the
carbon market price and carbon efficiency is threatened by the policy environment,
financial market conditions, and geopolitical risk. In general, we confirm that the
magnitudes and the fluctuations of both carbon price and carbon efficiency are lower
in lag2 and almost negligible in lag3 indicating the importance of examining how
uncertainty and the carbon market are connected across time and proving that the
impact of the unexpected event can be rapidly and effectively absorbed by the Euro-
pean carbon market, and fluctuations may be smoothed out, allowing a quick return
to stability. Moreover, we notice that, for the medium term, the magnitude of GEO
shocks was the highest, followed by financial uncertainty and TEU. We also confirm
that the relationship between TEU, FSI, and GEO and the European carbon market
is mostly negative during the Brexit crisis, COVID-19, Sino-US trade disputes, and
the Russo-Ukrainian war.

Fig 8 and Fig 10 represent the time-varying impulse responses of carbon price and
corporate carbon efficiency uncertainties shocks at different time points. Our find-
ings indicate that crises affect the impact of uncertainty shocks on carbon market
efficiency for the short and medium term. In other words, shocks from GEO, FSI,
and TEU have a more considerable effect on carbon price and corporate carbon effi-
ciency during the Brexit crisis, COVID pandemic, and Russo-Ukrainian war, which
again verifies our principal results. In addition, we detect some differences between
daily and weekly results regarding the reaction of the carbon price and corporate
carbon efficiency to uncertainties shocks at different time points. This result is quite
reasonable and can be explained by the fact that using daily and weekly data allows
us to discover in detail the response of our variables to uncertainty during global
crises.
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Figure 7: Impact of uncertainty shocks on weekly carbon price and carbon efficiency
at different time horizons.

4.2 Nonlinear Impulse-response Analysis

Using the threshold SVAR, we studied the asymmetric impact of uncertainty shocks
on carbon price and carbon efficiency. The Threshold SVAR model has numer-
ous distinct characteristics that make it an adaptive tool for capturing some of the
potential nonlinearities resulting from regime change, multiple equilibria, and asym-
metrical responses to shocks (Atanasova, 2003; Ferraresi et al., 2015). The testing of
a linear VAR against a threshold alternative is shown in Table 4. As demonstrated,
the P-values for all three Wald tests (sup-Wald, avg-Wald, and exp-Wald) reject
linearity and support the presence of two different regimes. Figs. 11, 12, and 13
provide a summary of the nonlinear impulse response functions. We simulate the
reactions by allowing each structural shock to enter the model with a different sign
(positive or negative) and varying magnitude (one- or two-SDs) in order to reveal
the potential asymmetry.

Starting with TEU, fig.1 shows the response of carbon price and corporate carbon
efficiency to TEU shocks in low and high regimes. Our result indicates that corpo-
rate carbon efficiency and carbon price reacts more to both positive and negative
shocks in the low TEU regime than in the high TEU regime. This may acknowledge
the presence of asymmetries. As seen in Figure 11, the response of both carbon
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Figure 8: Impact of uncertainty shocks on weekly carbon price and carbon efficiency
at different time points.

Figure 9: Impact of uncertainty shocks on daily carbon price and carbon efficiency
at different time horizons.
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Figure 10: Impact of uncertainty shocks on daily carbon price and carbon efficiency
at different time points.

Table 4: Threshold estimations

Threshold Estimated Threshold Sup-Wald Avg-Wald Exp-Wald Obs. in High regime Obs. in Low regime
Variable Statistic Statistic Statistic

TEU ŷ = 0.025722 73.91 53.54 34.67 35 44
(0.000) (0.000) (0.000)

FSI ŷ = 0.128105 57.95 43.17 26.23 26 53
(0.000) (0.000) (0.000)

GEO ŷ = -0.021376 54.11 34.48 24.10 46 33
(0.000) (0.020) (0.000)

Note: Values in brackets are P-values. The delay parameter is set to 1 following Balke (2000) and
each regime is restricted to contain at least 15% of the total observations
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price and corporate carbon efficiency to TEU shocks seems to be fairly symmetri-
cal in both the high TEU regime as well as in the low TEU regime, i.e. positive
and negative shocks seem to have roughly the same impact in both regimes. On
average, carbon price and corporate carbon efficiency react negatively (positively)
to a positive (negative) shock of TEU. Specifically, the influence of TEU shocks on
carbon markets is most pronounced in the short and medium run but becomes less
significant in the long term. Essentially, if there is an unexpected increase in TEU,
this will likely result in a drop in carbon prices and corporate carbon efficiency in the
short and medium term for both low and high regimes, rather than in the long term.

Secondly, we examined the response of carbon price and corporate carbon efficiency
to financial uncertainty. Fig.12, confirm, for the low and high regime, a negative
(positive) shock in FSI increases (decreases) carbon price and corporate carbon ef-
ficiency in the short and medium term, which is clearer for large (two-standard
deviation) shocks and confirms our principal results. Furthermore, the impact of
the impulse response remains only for a duration of four months and later becomes
insignificant in the long term. We also found that corporate carbon efficiency reacts
more to both positive and negative shocks in the high FSI regime than in the low
regime.

Regarding geopolitical uncertainty, under the high-stress regime, carbon prices and
corporate carbon efficiency are more sensitive to GEO shocks. Although carbon pric-
ing and carbon efficiency instantly react negatively to a negative shock in the GEO
in the low regime, it appears to initially react positively in the high regime before
adopting negative figures lower than those obtained in the low regime. Moreover,
for the low regime, a positive GEO shock has a positive influence on carbon price
and carbon efficiency in the short and medium term before declining and becoming
negative. We also discovered that, for the high regime, a positive GEO shock has
an immediate negative influence on carbon price and corporate carbon efficiency in
the short term, before decreasing in the medium and long term.
In conclusion, our findings demonstrate that the effects of TEU, FSI, and GEO
shocks on carbon prices and efficiency differ significantly between high and low
regimes, particularly in the short term, which confirms the robustness of our results.
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(a) Responses of carbon efficiency to TEU shocks

(b) Responses of carbon prices to TEU shocks

Figure 11: Response of carbon prices and carbon efficiency to TEU

(a) Responses of carbon prices to FSI shocks

Figure 12: Response of carbon price and carbon efficiency to FSI
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(b) Responses of carbon efficiency to FSI shocks

Figure 12: Response of carbon price and carbon efficiency to FSI (continued)

(a) Responses of carbon efficiency to GEO shocks

(b) Responses of carbon prices to GEO shocks

Figure 13: Response of carbon prices and carbon efficiency to GEO

5 Conclusion and policy implication

The effectiveness of Emissions Trading Schemes (ETS) is heavily reliant on mar-
ket indicators such as the stability and predictability of prices, both of which can
be negatively impacted by market uncertainty. Research reveals that the stability
of the European carbon market price is threatened by uncertainty. Based on the
discussions above, figuring out the relationship between carbon market and uncer-
tainty can enhance our comprehension of the carbon pricing mechanism. This can
further lead to the development of more precise and efficient policies to decrease
carbon emissions and uncertainty. To this, our paper investigates how economic
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policy uncertainty, financial uncertainty, and geopolitical uncertainty may affect the
European carbon price and corporate carbon efficiency under difficult crises and
major social events. Using the Bayesian TVP-SVAR-SV model, we studied firstly
the Time-varying impulse responses of spot and futures carbon prices and carbon
efficiency to TEU, FSI, and GEO uncertainties shocks at different time horizons.
Secondly, we selected three major crises which are the Brexit crisis on 23 June 2016,
the covid19 on 22 April 2020, and the Russo-Ukrainian war on 24 February 2022 to
examine the Time-varying impulse responses of spot and futures carbon prices and
carbon efficiency to the three uncertainties shocks at different time points. Our re-
sults indicate, for the short term, that TEU and FSI uncertainties negatively impact
the European carbon market more than GEO uncertainty. The negative impact de-
creased in the medium term and became negligible in the long term. Furthermore,
significant events and crises increase the negative effect of uncertainty shocks on spot
and futures carbon prices and corporate carbon efficiency. For robustness, our find-
ings are generally robust using both daily and weekly data. Moreover, we applied
the structural threshold VAR model (STVAR) to investigate the varying effects of
TEU, FSI, and GEO shocks on carbon price and corporate carbon efficiency across
different uncertainty regimes. We found that the impact of TEU, FSI, and GEO
shocks on carbon price and carbon efficiency is significantly different across high and
low regimes specifically in the short run, which confirms the robustness of our results.

Our study brings new analytical tools and several implications for managers, in-
vestors, and policymakers. As carbon pricing and carbon efficiency have overre-
acted to severe TEU, FSI, and GEO uncertainty shocks, policymakers need to pay
attention to the impact of uncertainty changes on the European carbon market.
To reduce it and stabilize market functioning, European policymakers should care-
fully investigate the causes of this overreaction. Additionally, while making dynamic
changes to preserve price stability, policymakers should take into account many fac-
tors. For instance, financial and geopolitical issues should be taken into account
in addition to economic concerns. In periods of low uncertainty or situations of
high uncertainty, policymakers may require different strategies. To increase the pre-
dictability of policies and prices and to ensure price stability, rules should be explic-
itly adjusted to different uncertainty shocks. The government should also continue
to promote economic growth and work to reduce the effect of uncertainty shocks.
Even while facing significant risks, such as the Covid-19 epidemic, the Brexit crisis,
and the Russo-Ukrainian conflict. Government should exert effort in its resolve to
lower CO2 emissions. To reduce uncertainty and ensure policy transparency and
sustainability, some supporting measures must be used, such as platforms for pro-
moting innovation and expediting the energy transition. Investors might also use
our findings to anticipate changes in carbon prices and to manage their investment
decisions in order to minimize potential risks associated with TEU, FSI, and GEO
volatility. Second, investors need to be aware of the characteristics of diverse types
of uncertainty as the European market responds to the TEU, FSI, and GEO in
different ways. Investors and traders must consider the effects of these various un-
certainty increases, especially when trying to purchase or hold carbon allowances.
Additionally, managers and directors benefit from understanding the elements af-
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fecting companies’ sustainability performance, especially those out of their direct
control. In this paper, we identify and investigate an important issue that affects
the sustainability performance of their firms, namely uncertainty. The results of our
study are expected to capture their attention or be noteworthy to them, as we give
evidence that corporate carbon efficiency is sensitive and negatively impacted by un-
certainty. Thus, firms should enhance their carbon emission management systems
through market-based rules. Also, they should focus on promoting green technology,
improving the management of fossil fuels, optimizing manufacturing, and ultimately
turning these expenses for reducing carbon emissions into profits. Firms can only
have sufficient incentives to reduce their carbon footprint during uncertain times in
this way.
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