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“Brown” Risk or “Green” Opportunity?  
The dynamic pricing of climate transition risk on global financial markets 

Philip Fliegel1 

Abstract. There exists mixed evidence about the pricing of climate transition risk on financial markets. 
While some scholars were able to find a “brown” premium for high-risk stocks, others identified a 
“green” premium for stocks benefitting from the climate transition. I contribute to this debate 
methodologically by proposing a novel combination of a firm’s climate transition risk exposure 
assessment based on a granular sector/technology classification with financial factor models. Thereby, 
I complement approaches relying on biased/incomplete ESG data as well as CO2 data, which have 
been used in most previous pricing studies. Moreover, I contribute empirically by dynamically using 
the most recent data available (until December 2022) and by comparing the pricing of brown and green 
companies on global financial stock markets simultaneously. I find that green stocks significantly 
outperform both brown stocks as well as the market average when controlling for well-established risk 
factors. This finding is also robust when looking at specific climate sensitive sectors, namely the 
transportation, utility and energy sector. Interestingly, the green outperformance accelerated after the 
Paris Agreement, solidifying the hypothesis that green stocks profited from an unexpectedly strong 
increase in green preferences from both consumers and investors. It will be interesting to study whether 
brown stocks will start to outperform green stocks in the future which would be in line with the 
theoretical expectation that high-risk brown stocks yield higher expected returns. A Brown Minus 
Green Factor using the returns from my constructed brown/green portfolios can be used to empirically 
test this expectation in the future. For now, I add the tentative finding that brown portfolios carry 
substantially higher dividend yields in 2023, indicating higher expected returns, in line with theory. 
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1 Introduction 
There is growing awareness about the relevance of financial markets for the low carbon transition of 
fossil fuel-based economies (e.g. Carney, 2015). Financial market can either hinder or advance the 
transition through various transmission channels such as available financing options, cost of capital and 
financial flows towards or away from “brown”/”green” economic activities. Key in evaluating whether 
financial markets play an enabling or a hampering role within the low carbon transition is to ask whether 
and to what degree financial markets price climate risk in asset prices. If financial markets priced climate risks 
strongly then financial markets play an enabling role in the envisioned low carbon transition by for 
example increasing (lowering) the borrowing costs of brown (green) loans. However, when financial 
markets are oblivious towards mounting climate risks, then financial markets will hamper the low 
carbon transition by delaying the relocation of investments and increasing the political as well as 
financial costs of the transition (Battiston et al., 2021). 

Generally, there are two broad climate risk categories which might impact financial market pricing. On 
the one hand, physical climate risks describe risk stemming from climate change itself. The impacts of 
climate change will influence various stakeholders in different positive or negative ways. An example is 
the increase of weather extremes which will influence the insurance business significantly. On the other 
hand, climate transition risks, are not related to biophysical processes, but stem from the reaction to 
such physical climate risks, i.e. the low carbon transition to avoid the worst impacts of climate change 
through climate mitigation (Giglio et al., 2021). 
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This paper will focus on climate transition risk and its pricing on financial markets. Generally speaking 
the low carbon transition can happen both in an orderly as well as in a disorderly manner. During an 
orderly transition, expected climate policies are put in place rapidly to then slowly increase in ambition. 
Market participants can form stable expectation about the future state of climate policies (Monasterolo, 
2020) and no frictions such as stranded fossil assets occur (van der Ploeg & Rezai, 2020). Increasingly 
likely however is the second option, namely that global economies will transition towards a low carbon 
future in a disorderly manner. Such a scenario emerges when climate policies are enacted very late or 
unexpectedly and therefore must be immediately harsh. Market participants then do not have sufficient 
time to form a stable long-term outlook and their expectations change rapidly after the announcement 
of more ambitious climate policies. This creates the risk of significant losses and stranded assets for 
exposed investors as well as high carbon firms (Battiston et al., 2021; van der Ploeg & Rezai, 2020). 
Climate transition risk is higher in case of a disorderly transition as companies and investors do not 
plan for the low carbon future which then increases the likelihood that climate policies or technological 
shocks are unanticipated and surprising to market participants. In order to test for the pricing of this 
climate transition risk on financial markets I first differentiate the exposure to this climate transition 
risk or opportunity (henceforth I will use “risk”, implying both upside and downside climate transition 
risk). In a second step the pricing of positive and negative exposure can be compared. I will focus on 
the climate transition risk of listed companies as they represent large global companies which are key 
stakeholders within the transition and good financial market pricing data is a{Zerbib, 2019 #72}vailable 
for these firms. 

Listed companies can be positively, negatively or mostly neutrally exposed to climate transition risk. 
The risk exposure mainly depends on the economic activities the company is involved in as well as the 
technology utilized (Battiston et al., 2020). A car manufacturer can be for example negatively expose to 
climate transition risk, if the manufacturer focuses exclusively on diesel cars. However, a car 
manufacturer producing electric vehicles is positively exposed as the firm might benefit from a 
disorderly transition towards low carbon technologies. Standard industry classifications such as the 
NACE Rev.2 codes for the European Union classify all economic activities into 4-digit codes. However, 
to date, they do not take climate aspects into account2. For example, the very climate policy relevant 
economic activity production of electricity (NACE 35.11) includes both the production of electricity from 
renewable as well as non-renewable sources (Eurostat, 2008). Thus, NACE codes do not take 
technologies into account and are thus ill suited to differentiate listed firm’s climate transition risk 
exposure. On upside/positive climate transition risk, the EU taxonomy on sustainable activities is set 
to fill that data gap as listed firms will have to report the percentage taxonomy alignment of their 
revenues, opex and capex from 2023 onwards. This metric could then be used to estimate how exposed 
companies are to the opportunities of a disorderly transition. However, the taxonomy only focuses on 
sustainable activities and thus provides no insights into the rest of the revenue and capex, i.e. whether 
they are exposed to negative risk or neutral from a climate relevance perspective. Partly addressing 
these shortcomings, Battiston et al. (2017) came up with the Climate Policy Relevant Sector (CPRS) 
methodology which reclassifies 4-digit NACE codes into 9 distinct sectors. The classification is based 
on companies GHG emissions, the relevance for climate policy and the importance of the economic 
activity within the energy value chain. Beyond the 9 main sectors the CPRS methodology differentiate 
also into granular sub-sectors which separate economic activities based on their energy technology 
(Bressan et al., 2022). However, in order to allow for such a reclassification, one must know very 
detailed company information, i.e. utilized technologies per economic activity. Such information is not 
(yet) disclosed by companies, thus CPRS granular requires painful company by company analysis 
rendering the method very time consuming until new disclosure regulations such as the EU Taxonomy 
or the Corporate Sustainability Reporting Directive will provide more publicly available company data. 

                                                            
2 There is an update of the NACE codes expected for 2024. 
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For this paper I use The Refinitiv Business Classification (TRBC) in order to differentiate company’s 
climate transition risk exposure. TRBC classifies more than 72000 companies into 13 economic sectors 
and 898 activities which show to the highest level of granularity what is the most relevant business 
activity of the company and what technology is used predominantly in the production process (TRBC, 
2022). Thereby it is possible to identify firms at high-risk within a disorderly transition (e.g. diesel car 
manufacturers) as well as firms which might benefit from such a transition (e.g. electric vehicle 
manufacturers). The advantage of the TRBC approach is that large green/brown portfolios can be 
constructed relatively easily while still differentiating accurately between high and low climate transition 
risk. To the best of my knowledge this paper is first in analyzing stock returns of brown and green firms 
based on a granular industry classification which takes technologies into account. Next, I compare the 
pricing of these brown (high-risk) companies vs. the pricing of green (high opportunity) companies 
against one another as well as against the market. Most notably I show by using financial factor models, 
the different factor loadings of green and browns portfolios over time using the Fama French 3 and 5- 
Factor models as well as the Carhart 4-Factor model. I find a green premium compared to the market 
average as well as against brown stocks. This result is stable for different climate sensitive industries, 
different portfolio weights, differing time horizons and geographical locations. I also describe the 
development of this premium over time and highlight the apparent relevance of the Paris Agreement 
in my time series. Finally, I construct a Brown Minus Green (BMG) Factor, show its pricing properties 
and discuss the low correlation against other established pricing factors. 

The rest of this paper is structured as follows: I first highlight previous research on pricing of climate 
risks on financial markets. Then I explain the methodology of first identifying high/low-risk companies 
and then to analyze their pricing on global financial markets over time. Subsequently, I present main 
results as well as interesting auxiliary findings. Finally, I debate the implication of my findings, discuss 
limits and provide an outlook for further research. 

2 Literature Review 
My research relates to a quickly expanding research field treating the relevance of climate related risks 
on financial markets. In what follows I briefly summarize some key qualitative research to then focus 
on relevant recent quantitative work on the pricing of climate transition risk both in the stock as well 
as on the bond market. Then I also discuss the data foundation most scholars utilize, namely ESG 
and/or CO2 data.  

Some authors qualitatively seek to understand if/how decision makers on financial markets incorporate 
climate risks into their investment decisions. Christophers (2019) interviews institutional investors and 
finds that there is no reason to believe that the market will by itself stop investing in carbon intensive 
securities as long as they remain profitable. Most investors responded that they simply do not view it 
as their job to invest ethically. Additionally, the stated investment horizon of most investors is 
considerably shorter than the anticipated negative impacts from climate related risks. Krueger et al. 
(2020) also ask institutional investors if and how they started to incorporate climate related risk into 
their investment decisions. They find that institutional investors have started to incorporate climate risk 
as most believe that climate risks will have financial implications. Mentioned transmission channels are 
reputational, legal and performance related. Interesting further findings show that less than half of the 
respondents actually started to analyze carbon footprints and exposure to stranded assets. Most relevant 
for this study Krueger et al. (2020) also find that the average institutional investor believes that equity 
prices on financial markets do not (yet) fully reflect climate risks.   

There is also quickly expanding empirical work on the pricing of climate transition risk on financial 
markets. Most studies employ either CO2 estimates or ESG scores in order to identify a firm’s climate 
transition risk profile. One of the first scholars embarking on this mission is Lewandowski (2017), who 
focuses on firms scope 1 & 2 emissions between 2003 and 2015. He finds unconclusionary results as 
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companies’ emissions are positively related to return on sales, but exhibit a negative relation to Tobin’s 
q. These mixed findings can be explained by the analyzed horizon, as Bolton and Kacperczyk (2021b) 
show that the carbon premium they were able to find only started to materialize recently. Relying on a 
cross-section of US stock market returns they find a significant carbon premium for both total 
emissions and emissions change. They provide three hypothesis which might explain the pricing of 
emissions on financial markets. First, the carbon premium hypothesis, in line with the efficient market 
hypothesis, states that rational investors want to be compensated for holding riskier assets by higher 
returns. As carbon intensive firms bear higher carbon transition risk, they should pay a carbon 
premium. Second, there could be a mispricing of climate related risks on financial markets. Thereby 
investors could earn extra returns by holding green stocks. Finally, the divestment hypothesis explains 
higher stock returns for high carbon “sin” stocks by divestment from ethically aware investors who 
exclude certain equity’s in their investment strategies. Bolton & Kacperczyk (2021b) regard their 
findings as proof for the carbon premium hypothesis. The theoretical underpinning of the carbon 
premium hypothesis can be found in Pástor et al. (2021) who construct a theoretical model in 
equilibrium showing that rational investors are willing to pay higher prices for green firms, which leads 
to lower alphas (i.e. underperformance) compared to brown stocks which are expected to generate 
positive alphas (i.e. outperform). However, if customers/investors unexpectedly and significantly shift 
their preferences towards green products/investments, then green equities may still outperform brown 
ones in the medium term even though they are expected to generate lower returns. 

Recent work by Bolton & Kacperczyk (2021a) reinforces their findings from the US on a global level. 
They are able to show a carbon premium for a panel of stocks across 77 countries from 2005 to 2018 
for both carbon emission levels and growth rates. Interestingly they note that the carbon premium rises 
especially after the Paris Agreement. Hsu et al. (2022) find supporting evidence for industrial pollution. 
A high minus low portfolio in toxic emission intensity yields an outperformance of 4.42% p.a. which 
remains significant after controlling for risk factors in the Fama French 5-Factor model (Fama & 
French, 2015). Relatedly, Alessi et al. (2021) construct a synthetic weighted index of a company’s 
environmental transparency and greenhouse gas (GHG) emissions in order to measure a firm’s 
environmental performance. They find lower returns for greener, i.e. higher transparency and lower 
GHG emissions, firm`s. They explain their findings in line with Pástor et al. (2021), i.e. investors are 
willing to accept below average green returns as they can function as a hedge against climate related 
risks. However, different to Bolton and Kacperczyk (2021a, 2021b) they cannot find a carbon premium 
when only GHG emissions are considered. 

Monasterolo and de Angelis (2020) use well known high and low carbon indices and utilize asset pricing 
models to test whether the market prices these indexes differently after the Paris Agreement. They find 
that the systematic risk (the market factor) of low carbon indices decreases significantly, while it is 
mildly rising for high carbon indices. Additionally, the optimal portfolio weights of low carbon indices 
tend to increase after the Paris Agreement. Bernardini et al. (2021) focus on European electric utilities 
and find different to Bolton and Kacperczyk (2021a, 2021b) a low carbon premium, i.e. firms with low 
GHG emission intensity ratios, produce higher risk-adjusted returns. They utilize common risk factor 
models and show that this premium is especially pronounced in the time period from 2012 until 2016. 
Pástor et al. (2022) are able to show a green outperformance both for German green bonds as well as 
US equity returns. They explain their results, in line with their theoretical model (Pástor et al., 2021), 
by the difference between realized and expected returns, i.e. they are able to show that unexpectedly 
strong increases in concern about climate transition risk cause high green realized returns, not high 
return expectations. These findings are reinforced by van der Beck (2021) who also shows a green 
outperformance of equities and can explain the high green returns by flows towards sustainable funds. 

Other authors estimate climate transition risk of companies utilizing marked-based approaches. Most 
notably, Görgen et al. (2020) create a brown green score (BGS) which is constructed by combining 
different variables from various ESG databases, assigning a high weight to corporate carbon emissions. 
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For the time period from 2010 until 2017 they find that firms with higher BGS scores (i.e. browner 
stocks) exhibit higher expected returns. This result is in line with both Bolton and Kacperczyk (2021a, 
2021b) as well as Pástor et al. (2021). However, they also find, that positive changes in the BGS score 
lead to negative stock returns. This implies that firms which become unexpectedly greener are rewarded 
with extra returns. This is in line with Pástor et al. (2021) theoretical prediction that unexpected changes 
towards a green economy are beneficial for green stocks but differs from Bolton and Kacperczyk 
(2021a, 2021b) observation that positive changes in the growth rates of carbon emissions are associated 
with higher returns. As a next step, Görgen et al. (2020) utilize the BGS score to create a brown minus 
green factor. They then run cross-sectional regression to test for a brown risk premium, which they 
cannot find, again diverging from the results of Bolton and Kacperczyk (2021a, 2021b). Görgen et al. 
(2020) conclude that financial market actors are apparently not fully incorporating climate related risk 
into their investment decisions. Ravina and Hentati-Kaffel (2019) create another factor aimed at 
capturing carbon transition risk in common factor models. They create their Green Minus Clean factor 
by subtracting firms participating in the EU emission trading scheme from firms which are exempted. 
They find a high green premium in stock returns for the time period from 2008 – 2018. Huij et al. 
(2021) follow a similar approach and construct a Polluting Minus Clean factor utilizing scope 1 and 2 
emission data. They find that, when controlling for industry effects, firms with higher carbon beta 
(firms with higher emissions) tend to exhibit higher returns, all else being equal. This carbon premium 
is lower in times when climate change is frequently mentioned in the news, and during times of weather 
extremes. Similarly, Pástor et al. (2022) find that absent unexpected climate concern shocks, the 
highlighted green outpfermormance vanishes. This could hint at the mechanism proposed in Pástor et 
al. (2021), that shifts in preferences might moderate the carbon premium. Higher awareness to climate 
change might trigger such an unexpected reevaluation.  

Several scholars developed text-based approaches to create indices supposed to measure such climate 
change news risk and hedge climate change exposure of firms. Most notably, Engle et al. (2020) 
pioneered the field by proposing two newspaper-based climate change risk indices in order to construct 
mimicking portfolios which are hedging against climate risks. Ardia et al. (2022) extend the proposed 
methodology to daily frequencies and a broader set of media outlets. They can show that on days with 
unexpected increases in in climate change concerns, green stocks tend to outperform brown assets. 
Finally, Sautner et al. (2020) utilize a machine learning approach and quarterly earning call transcripts 
in order to derive a proxy for companies’ climate change exposure. This proxy can be used to predict 
green job creating, green technologies as well as some asset prices in the equity and options markets. 

There is also abundant work on the relation of ESG scores and stock market performance (e.g. Demers 
et al., 2021; Havlinova & Kukacka, 2023; La Torre et al., 2020). Overall results are inconclusive and 
heavily depend on the time horizon, universe of companies, ESG data provider and ESG sub score 
chosen. Beyond studies focusing on the stock market there is also work on the pricing of climate related 
risks on the bond market. Delis et al. (2019) investigate the loan spread of corporate loans of firms with 
high fossil fuel reserves which are at risk of becoming stranded. They find no significant pricing of this 
climate transition risk before 2016 but significantly higher loan spreads for high climate risk companies 
after the Paris Agreement. Other scholars focus on the cost of debt for renewable energy firms. Results 
suggest a dynamic pricing as renewable energy firms initially pay a higher price for their debt. However, 
over time a cost advantage for green firms materialize compared to higher carbon firms (Kempa et al., 
2021). Hyun et al. (2021) study the pricing differentials of labelled vs. unlabeled bonds and find that 
labelled green bonds command 24-36 basis points lower bond yields compared to unlabeled bonds.  

Different to most papers presented here, my identification of companies with different degrees of 
climate transition risk does not rely on CO2 estimates or ESG/CSR scores. Potential shortcomings of 
both approaches are briefly discussed now. On the one hand, CO2 or GHG emission data comes with 
several data quality issues. Most notably, the data on the firm level is notoriously sparse and difficult to 
compare amongst companies and database providers. This is particularly true for the very relevant 
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scope 3 value chain emissions where the disclosure is voluntary and estimates are hard to obtain and 
difficult to compare (Ducoulombier, 2021). Additionally, Berg et al. (2021) find that historic CO2 data 
on Refinitiv ESG is been rewritten or deleted retroactively on an ongoing basis, questioning the quality 
and validity of databank emission estimates. Bressan et al. (2022) provide a striking example of the 
difficulties associated with utilizing scope 3 emission data. Even though car manufacturers Stellantis 
and Volkswagen have similar fleet emissions in 2020, Volkswagen exhibits scope 3 GHG emission 
intensity 128x higher than Stellantis, simply because Stellantis uses a different methodology in 
calculating scope 3 emission data. Kalesnik et al. (2020) show that only roughly 50% of companies 
report emissions data directly. Data providers commonly estimate carbon data; however, the authors 
show that these estimates are roughly 2.4 times less effective than directly reported data. Beyond data 
quality issues a sole focus on CO2 data might be oversimplified as CO2 emissions might indicate 
different climate transition risk exposures across different industries. Emissions might be for example 
more accepted by policymakers if they are emitted by an enabling industry supporting the climate 
transition. Moreover, as of today a global CO2 price covering most emissions seems far out of reach 
and many implemented CO2 prices are still too small to matter economically (World Bank, 2023). Thus, 
transition risk might not only arise from high costs of CO2 emissions due to CO2 prices but can also 
stem from subsidies for alternative technologies, or sector specific command and control regulations. 
These risks are not captured when only focusing on CO2 emission data. 

On the other hand, commonly used ESG scores which mix environmental, social and governance 
indicators, also exhibit severe data quality issues: First, they are not comparable amongst different 
publishers (e.g. Chatterji et al., 2016; Dimson et al., 2020; Dumrose et al., 2022; Kotsantonis & Serafeim, 
2019; Yu et al., 2020). Second, they are vulnerable to greenwashing as Drempetic et al. (2020) find a 
significant size bias in the ESG ratings of Thomson Reuters ASSET4 ESG (later called Refinitiv ESG). 
Third, Berg et al. (2022) show that the huge variation in ESG scores across ESG rating agencies stems 
from differences in scope, weight and measurement. Most problematic, the measurement category is most 
relevant in explaining differences in ESG scores. Thus, ESG score differences rely not only on 
technicalities but highlight significant differences in the definition of the underlying data and on how 
this data is measured. They also identify a rater’s bias as raters scores are correlated across assessments 
in different categories per firm. In other words: a high rating in one E,S,G category also prompts a 
higher rating in another E,S,G category. Fourth, Berg et al. (2021) show that historic ESG data on 
Refinitiv ESG is backfilled and changed by Refinitiv. While one big methodological change in 2020 was 
communicated by Refinitiv, Berg et al. (2021) find that Refinitiv rewrites data on an ongoing basis 
without communicating the changes to the public. Interestingly, Refinitiv appears to rewrite ESG data 
in a biased manner, that is, companies which outperformed in the last years are more likely to gain 
positive ESG updates. This leads to historic overperformance of high ranked ESG companies for the 
rewritten data. However, when using the initial data, no ex ante outperformance can be obtained.  

Summing up, there is mixed evidence on the pricing of climate related risks on financial markets. Some 
authors find a brown carbon premium while other scholars show that green stocks outperform brown 
ones. Overall the results seem to be highly dependent on the respective time frame and measure for 
climate transition risk. I add to that literature methodologically by utilizing a different approach in 
identifying climate transition risk, namely the riskiness of the used technology through the TRBC 
business classification. By grouping companies according to the sustainability of their technologies with 
respect to their climate sensitive industry, I am overcoming limits from the utilization of CO2 or ESG 
data. Gaining a better understanding of the pricing of climate transition risk is key for all stakeholders 
involved in the low carbon transition. Investors gain insights into potential climate risks of their 
portfolio positions and may learn what value reshuffling of investments towards green assets might 
yield. Policymakers can better understand how credible their low carbon policy announcements are for 
financial market participants. Finally, climate finance scholars benefit from a sound understanding of 
the pricing of climate risks on financial markets. To this end I contribute empirically in different ways. 
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First. I analyze the factor loadings of brown and green portfolios simultaneously. To date, most studies 
only focused on brown or green portfolios, due to the difficulties of identifying brown/green 
companies at the same time with either CO2 or ESG data. Second, I use, the most current time frame 
until the end of 2022. Thereby my 10-year time window includes the Paris Agreement, the Covid-19 
Pandemic as well as the energy price shocks following Russia’s invasion of Ukraine. I exploit this 
current dataset also in a dynamic way as I analyze the pricing of climate transition risk on global financial 
markets also over time by means of rolling regressions. Third, I extend the current focus of the literature 
beyond the US towards global equity markets with separate analysis for 3 continental regions. Fourth, 
I propose the dividend channel as another means of showing that investors expect higher compensation 
for holding riskier brown assets compared to green portfolios as well as the market average. Finally, I 
use the TRBC business activity and technology classification to construct a BMG pricing factor which 
might significantly help explaining global cross-sections of returns as climate transition risk becomes 
increasingly crucial on global financial markets. 

3 Methods 
This section describes my data as well as my empirical strategy. First, I show how I create 8 climate 
sensitive portfolios through the TRBC business/technology classification. Then, I discuss some 
properties of these portfolios. In a second step, I highlight the financial pricing models which I employ 
to answer the research questions. I use the TRBC company classification in order to create different 
portfolios from the Thomson Reuters Eikon database. I thereby create portfolios constituted of active 
global brown or green companies from 3 distinct climate sensitive industries. Additionally, I create an 
overarching green and brown portfolio pooling all companies from different industries together. I 
exclude all firms with a market capitalization below 10 million USD as well as all companies with 
missing ISINs and download errors. After the data treatment I am left with 2235 companies. 

Table 1 summarizes the portfolios. The chosen industry portfolios are all highly climate sensitive as the 
respective sectors transportation, utilities and energy are all either directly (scope 1-2) or indirectly 
(scope 3) highly CO2 intensive and are all highly relevant for the energy value chain as well as for 
climate politics (Battiston et al., 2020). While the sectors agriculture, energy intensive industry as well 
as construction are highly climate sensitive and carry high GHG emissions, TRBC does not yet offer a 
detailed technology differentiation which would allow to easily identify brown and green companies in 
these sectors. Thus, in line with (Bressan et al., 2022), I focus on few key sectors where high and low-
risk technologies were easy to identify. Most notably, based on granular TRBC I was able to separate 
two different types of companies within the same sectors. Based on their technology, one group can 
be categorized as having high climate transition risk, the other group might significantly profit from the 
climate transition as it utilizes mostly zero or low carbon technologies. A good example to highlight 
the strength of the chosen categorization is the automotive sector as a subsector of the transportation 
sector. High risk companies are companies manufacturing predominantly vehicles with internal 
combustion engine (ICE) or hybrid power train such as Mercedes or Toyota whereas high climate 
transition opportunity companies such as Tesla or electric vehicle (EV) startups such as Li Auto 
exclusively use alternative powertrains. This TRBC based approach is thus able to separate companies 
from the same industry based on their climate transition risk profile. My portfolio construction based 
on the TRBC classification relates to the well-established CPRS sector classification pioneered by 
Battiston et al. (2017) which reclassifies climate relevant NACE codes into granular CPRS. This 
approach was later refined by Bressan et al. (2022) who introduced more granular CPRS2 subsectors 
which rank different energy technology by their climate transition risk profile similarly to my approach. 
However, my analysis does not start at the NACE code level but uses the TRBC. Additionally, my 
approach is even more granular than the CPRS approach by Bressan et al. (2022) as the TRBC is able 
to differentiate brown/green technologies highly accurately. For instance, I go further than pooling all 
road vehicles into one CPRS2 subsector by differentiating between brown ICE and green EV 
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technologies. In order to facilitate the comparison between the TRBC and CPRS granular I included a 
comparison between the two classifications in table 1 wherever possible.  

All in all, I create 8 distinct portfolios. Three Industry portfolios each containing two different groups 
of high/low climate transition risk companies in the transportation, utility and energy sectors. My two 
baseline portfolios combine all green and all brown firms into overarching non sector-specific 
portfolios. As depicted in table 1, the 8 portfolios are not exactly similar in terms of number and size 
of constituents as there are roughly 3.5x as many brown firms in the portfolios as green ones. This 
highlights the current structure of most economies where carbon intensive companies significantly 
outnumber green firms. This is also indicated by the mean market capitalizations of all green and brown 
companies across all time periods. As brown firms are mostly well-established incumbents, they carry 
a roughly 2x bigger market capitalization compared to green firms in the same industry. This holds for 
all sectoral portfolios with the notable exception of the small EV portfolio. The very high market 
capitalization of the Tesla stock, which crossed the 1 trillion $ threshold for parts of the time series 
explains this observation. Concerning the geographic dispersion of the firms in my dataset, most 
companies are having their headquarter in the United states (341) followed by China (294), Canada 
(166) and Australia (90) and India (85). While China and the US as well as India are economic 
superpowers, Canada and Australia are heavily focused on the extraction of natural resources, thus 
many companies from the fossil energy portfolio are Canadian or Australian. All in all, my portfolios 
cover companies from all major economies and approximately reflect economic global power 
structures. Interestingly, green firms are more heavily focused in Asia, as out of the 7 countries with 
most green firms, 6 countries are in Asia. 
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Table 1 | Portfolio summary. The all brown/green portfolio are aggregates of the 3 industry sub-portfolios. The market cap column indicates the mean market capitalizations at the end of 
2022. The Refinitiv Business Classification (TRBC) and Climate Policy Relevant Sectors (CPRS) are granular industry classifications. The top 3 positions are based on market capitalizations. 
Authors’ own calculation with data from the Thomson Reuters Eikon database. 

Portfolio #Firms Market Cap  TRBC activity name CPRS2 granular  Top 3 positions 12/2022 

All Brown Firms 1732 $5.5 bn All brown TRBC activities All brown codes Saudi Aramco, ExxonMobile, Chevron 

ICE Manufacturers  151 $7.9 bn Consumer Cyclicals|Automobiles and Auto 
Parts|Auto&Truck Manufacturers 

Transportation|Road| 
Vehicles|Combustion 

Toyota, Mercedes-Benz, BYD 

Brown Utilities  307 $3.6 bn Utilities|Natural Gas/Fossil Fuel Electric 
Utilities/IPP/Multiline Utilities 

Electricity|Fossil| 
Coal/Gas/Oil/Nuclear 

Abu Dhabi National Energy Company, 
Électricité de France, Sempra Energy 

Fossil Energy 1274 $5.6 bn Energy-Fossil Fuel|Coal/Oil & Gas/Oil & 
Gas Related Equipment and Services 

Fuel|Nuclear & 
Fuel|Fossil|Coal/Gas/Oil 

Saudi Aramco, ExxonMobile, Chevron 

All Green Firms 503 $2.6 bn All green TRBC activities  All green codes Tesla, Adani Green Energy, Enphase 
Energy 

EV Manufacturers  41 $11.5 bn Consumer Cyclicals|Automobiles and Auto 
Parts| Electric (Alternative) Vehicles/ 
automotive batteries 

Transportation|Road| 
Vehicles|Hydrogen/Electric 

Tesla, Li Auto, Rivian 

Green Utilities  214 $1.8 bn Utilities|Renewable|IPP|Solar 
/Wind/Alternative/Geothermal/Hydroelect
ric/Biomass Utilities 

Electricity|Renwable| 
Solar/Wind/Biomass 

Adani Green Energy, China Three 
Gorges Renewables, EDP Renováveis 

Renewable Energy 248 $1.8 bn Renewable Energy| Renewable Fuels/ 
Renewable Energy Equipment & Services 

/ Enphase Energy, Vestas Wind Systems, 
Tongwei 
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In order to compare the pricing of the 8 portfolios I create market capitalization (value) weighted 
portfolios. The portfolio weights of the value weighted portfolios are dynamically rearranged monthly. 
I am using total return index data as it includes dividend payments from companies. As an additional 
stability test, I also weight portfolios equally in order to show that my results are not only driven by 
some heavy weights such as Tesla. Moreover, I also form continental green/brown portfolios in order 
show that my results hold for all major economic regions. I use monthly return data from January 2013 
until December 2022 from the Thomson Reuters Eikon database. Due to databank specific errors, which 
are more pronounced for small companies on EIKON, I had to adopt a dual relative/absolute 
winsorization approach. First, I winsorize the absolute extreme (most positive/negative) monthly 
return values as they would otherwise bias the relative winsorization. The relative cutoff is subsequently 
set at three standard deviations below/above the median. I refrain from winsorizing market 
capitalizations as that would bias the market capitalization of larger firms downwards. Additional to the 
winsorization, I also exclude zero returns, which are often reported in EIKON for missing data points. 
In total, 120 different time periods are utilized for the time series regressions equaling the last 10 trading 
years. This is the most recent data available and covers a long enough time span to infer time-specific 
pricing differences. Additionally, the chosen time frame covers major positive/negative climate relevant 
political events such as the 2015 Paris Agreement or the election of Donald Trump as the 45th President 
of the United States in 2016. To compare the pricing of different portfolios against each other and the 
market average, I use well-established factor models, i.e. the Capital Asset Pricing Model (CAPM) or 
multi factor models. The CAPM estimate an assets systematic risk sensitivity compared to the market 
(beta) through OLS time series regressions (Lintner, 1975; Sharpe, 1964). More formally one can 
estimate the market model through the following equation: 

(3.1) Rit − RFt = αi+βi(RMkt − RFt)+ϵit  

Rit is the monthly weighted return of portfolio i, namely my portfolios 1-8. One time period t 
corresponds to one month in the time series. RFt is the risk-free rate of return, approximated through 
the 1 Month US Treasury Bill Rate. Hence, Rit − RFt equals the excess return of portfolios i at time t. 
RMkt is the return of market portfolio k at time t. Again, it follows that RMkt − RFt is the excess return 
of market portfolio k against the risk-free rate. As a stability test I utilize different market portfolios, 
but as my dataset contains global companies, the Morgan Stanley Capital International (MSCI) world 
total return index will be the baseline market portfolio. αi and βi are time-invariant stationary 
parameters, estimated by (3.1). αi is Jensen’s alpha coefficient, the alpha coefficient is the intercept of 
the regression. Alpha is positive if a portfolio outperforms the market on a risk-adjusted basis and 
negative if a given portfolio underperforms, all other risk factors considered. The beta coefficient 
measures the systematic risk of portfolio i against the market. βi = 1 implies a systematic risk of 
portfolio i in line with the market portfolio, and βi > 1 a larger systematic risk than the market 
portfolio. Finally, ϵit is the serially uncorrelated random error term. The CAPM model explains excess 
returns solely through the market factor, however, there are also other more complex models developed 
to better explain the variation in stock market returns. The Fama French 3-Factor Model for example 
is estimated through the following equation: 

(3.2) Rit − RFt = αi+β1i(RMkt − RFt) + β2iSMB𝑡𝑡 + β3iHML𝑡𝑡 + ϵit  

Both the High Minus Low (HML) and the Small Minus Big (SMB) additional factors are estimated 
through two further beta coefficients for each respective portfolio. The HML captures potential value 
premia while the SMB includes the tendency of small stocks to outperform larger stocks (Fama & 
French, 1993). I also run the Fama French 5-Factor model: 

(3.3) Rit − RFt = αi+β1i(RMkt − RFt) + β2iSMB𝑡𝑡 + β3iHML𝑡𝑡 + β4iRMW𝑡𝑡 + β5iCMA𝑡𝑡 + ϵit
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This model adds two more factors, namely the profitability factor Robust Minus Weak (RMW) as well 
as the investment factor Conservative Minus Aggressive (CMA) (Fama & French, 2015). Finally, the 4-
Factor Carhart Model adds to Fama French 3-Factor Model a momentum factor (Carhart, 1997): 

(3.4) Rit − RFt = αi+β1i(RMkt − RFt) + β2iSMB𝑡𝑡 + β3iHML𝑡𝑡 + β4iMOM𝑡𝑡 + ϵit 

I am most interested in the alpha (αi) coefficient. A significant alpha would imply that, even after 
accounting for all common risk factors explaining the performance of a portfolio, there remains 
significant outperformance of a portfolio. The existence of an alpha might thus indicate a brown risk 
premium, i.e. higher realized returns, that investors demand for the higher climate transition risk 
exposure of the brown portfolios. However, it might also indicate an outperformance of green stocks. 
The data on the pricing factors stems from the Kenneth French Online Data Library3. As I analyze 
global stock market portfolios heavily concentrated in developed economies, I use the Fama/French 
Factors for developed markets. 

I will compare the pricing of the all brown, all green as well as the pricing of the sector-specific 
portfolios. The sector-specific portfolios can be also interpreted as industry fixed effects as I am 
exclusively analyzing the within variation of an industry. Table 2 provides summary statistics for the 8 
portfolios as well as all the factors from the aforementioned factor models. Interestingly, green 
portfolios consistently exhibit higher average returns against their brown counterparts. However, they 
also show a higher standard deviation, which is expectable as green portfolios are on average smaller 
than brown portfolios. The highest average return can be found in the EV portfolio, the very high 
weight of Tesla and the extreme performance of this stock over the last decade explains this finding. It 
will be interesting to analyze by means of factor models if the outperformance of green portfolios 
against the market as well as the brown portfolios can be explained by common risk factors. 

Table 2 | Summary statistics for the time series of monthly value weighted portfolio returns. 
The Table depicts descriptive statistics for the monthly excess returns of several constructed portfolios, market indexes as 
well as pricing factors. Authors’ own calculation with data from the Thomson Reuters Eikon database. 

Variable  Obs  Mean  Std. Dev.  Min  Max 
 All Brown Return 120 .011 .043 -.168 .144 
 ICE Return 120 .012 .052 -.200 .158 
 Brown Utilities Return 120 .011 .035 -.160 .091 
 Fossil Energy Return 120 .010 .049 -.164 .152 
 All Green Return 120 .030 .086 -.184 .361 
 EV Return 120 .035 .158 -.343 .561 
 Green Utilities Return 120 .016 .038 -.102 .122 
 Renewable Energy Return 120 .034 .088 -.229 .266 
 MSCI World Total Return 120 .008 .042 -.133 .128 
 SMB Factor Return 120 -.001 .015 -.044 .032 
 HML Factor Return 120 -.001 .028 -.092 .120 
 RMW Factor Return 120 .003 .013 -.029 .046 
 CMA Factor Return 120 .001 .018 -.054 .081 
 MOM Factor Return 120 .005 .027 -.109 .067 
 

 

In my baseline analysis I focus on the whole-time frame from 2013 until the end of 2022, however, it 
is also interesting to observe trends in the alpha and beta estimates over time. To this end, I estimate 
rolling regressions, which apply a specific time window over the time series dataset. I utilize a 30-month 

                                                            
3 The Fama and French factors are downloaded from Kenneth French's data library (http://mba.tuck. 
dartmouth.edu/pages/faculty/ken.french/data_library.html). 
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time window. The first window starts in January 2013 and stops in June 2015, the second window starts 
then in February 2013 and so forth. Finally, I will create a zero-cost BMG Factor, which is long the 
brown portfolios while being short on the green portfolios. The return of the BMG factor can be 
written as: 

(3.5)  Rjt = (Rbt − RFt) − (Rgt − RFt) 

Where Rjt is the return of a BMG factor j. The return is calculated by subtracting the excess return 
above the risk-free rate of a green portfolio g from the excess return of a brown portfolio b. This 
approach follows the intuition of Görgen et al. (2020) and Görgen et al. (2021) albeit with two key 
differences. First, Görgen et al. (2021) utilize a very broad set of companies, including heavily weighted 
firms such as Apple which are not particularly climate relevant. I focus only on firms which are very 
climate sensitive. Second, I do not solely rely on (estimated) ESG and CO2 data, but use an 
industry/technology classification. In constructing a BMG factor, one would normally sort the 
constituents of the portfolios based on their brown/greenness, but as I am aiming to construct the 
most brown and green portfolios possible by means of the TRBC classification, I interpret the 
companies in my brown and green portfolios as the top/bottom climate transition risk exposed firms 
of a complete list of sorted global companies since they represent “pure-play” green or brown 
companies which earn most of their revenues in a very climate sensitive sector by either a very 
sustainable or very dirty technology.  The construction of the BMG factor thus mimics the construction 
of other traditional pricing factors and I will test whether my BMG factor correlates significantly with 
other known factors or if an additional BMG factor might in fact increase the explanatory power of 
traditional pricing models. Finally, the factor can be used to test empirically whether such a BMG factor 
produces positive or negative alphas. 

4 Results  
In what follows I will present the results of the factor model regressions of my various brown and green 
portfolios, thereby answering the research question whether and to what degree financial markets price climate 
risk in asset prices over time. 

4.1 Pricing of climate transition risk in baseline green and brown portfolios 
First, I will analyze the pricing of the two big brown/green portfolios, without differentiating with respect 
to specific industry effects. 
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Table 3 | Factor model regression results. The column headers highlight which value weighted portfolio was 
used as dependent variable. The rows illustrate the regression results for several pricing factors and the constant. Robust 
standard errors were employed for all models in which heteroskedasticity was detected. The last two rows show the number 
of observations as well as the estimated R squared. Authors’ own calculation. 

 (1) (2) (3) (4) (5) (6) 
VARIABLES All Brown All Brown All Brown All Green All Green All Green 
       
Market 0.787*** 0.812*** 0.804*** 1.173*** 1.174*** 1.135*** 
 (0.049) (0.053) (0.053) (0.188) (0.214) (0.187) 
SMB 0.294** 0.298** 0.205 0.812 0.812 0.361 
 (0.139) (0.139) (0.149) (0.561) (0.559) (0.604) 
HML 0.634*** 0.687*** 0.507*** -0.848*** -0.846*** -0.763 
 (0.073) (0.086) (0.149) (0.219) (0.244) (0.514) 
RMW   -0.375*   -1.282** 
   (0.203)   (0.580) 
CMA   0.078   -0.780 
   (0.219)   (0.694) 
MOM  0.107   0.003  
  (0.093)   (0.371)  
Constant 0.006*** 0.005** 0.006*** 0.021*** 0.021*** 0.026*** 
 (0.002) (0.002) (0.002) (0.006) (0.006) (0.006) 
       
Observations 120 120 120 120 120 120 
R-squared 0.744 0.747 0.752 0.441 0.441 0.479 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 

Table 3 depicts the regression results for the brown and green baseline portfolios. All in all, I estimate 
3 different factor models for each of the portfolios. First, the Fama French 3-Factor model in columns 
(1) and (4) for the brown/green portfolio respectively. Second, the Carhart 4-Factor Model in columns 
(2) and (5) and, Third the Fama French 5-Factor model in the columns (3) and (6). The results for the 
alpha estimator are very constant across the different models for both the brown and the green 
portfolio as they do not change significantly when I add more pricing factors. All models indicate a 
strong outperformance of the green portfolio against the market as well as against the brown portfolio. 
Interestingly the brown portfolio seems to outperform the market as well on a risk-adjusted basis, albeit 
with significantly lower alpha estimates. The alpha estimates for both the brown (~.5%) and green 
(~2.3%) portfolio are highly significant in all estimated models. Annualizing the alphas for the 5-Factor 
Models yields an annual outperformance of ~6% for the brown and 27.6% for the green baseline 
portfolio. The market beta estimates are significantly higher for the green portfolio compared to the 
brown portfolio. The value of ~1.2 indicates that the systematic risk of the green portfolio is slightly 
higher than the market average. The beta value of the brown portfolios (~0.8) shows that the systematic 
risk of the brown portfolio is perceived to be lower than the market average of 1 across the whole time 
frame. These results are in line with expectations since brown firms are more established incumbents 
which carry higher average market capitalizations and also exhibited lower standard deviations 
compared to the green portfolio. Again, these results are very robust to adding additional factors. 

Concerning the other factors, the Momentum as well as CMA investment factor are not significant for 
neither portfolio. Albeit being not significant, the signs of the coefficient indicate that green firms seem 
to invest more heavily than their brown counterparts. This is in line with Pástor et al. (2021) who predict 
based on their theoretical model that green firms should invest significantly more than brown firms. 
Thus, I expect to see a positive (negative) coefficient estimate for the CMA factor for the brown (green 
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portfolio). Interestingly the RMW profitability factor is highly significant and negative for the green 
portfolio, indicating that green firms are rather weakly profitable compared to the market average. The 
HML factor shows the expected signs and is highly significant for most model specifications. It is 
positive for the brown portfolio indicating that brown stocks are rather value stocks, whereas it is 
negative for green stocks reflecting the growth stock characteristics of most green firms in the green 
portfolio. Finally, the SMB size factor is positive for both portfolios but higher for the green portfolio, 
which is again expected given that green firms are on average smaller compared to brown firms, at least 
in my sample. The R2 is consistently higher for the brown portfolios indicating that common factor 
models are better able to explain to excess returns of brown stocks compared to green stocks. This is 
due to the strong outperformance of the green portfolios over the last 12 years. In other words, factor 
models lack explanatory power if green stocks are able to produce such large alphas. 

I repeat the baseline regressions but add location information, thereby I create brown and green 
portfolios for three continental regions, namely Asia-Pacific, Europe and the Americas. Thereby, I can 
test whether the green outperformance is particularly driven by one world region. Since the momentum 
factor in the Carhart Model does not add significant explanatory power to the model, I will henceforth 
solely report the 5-Factor Fama and French Model regression results. 

Table 4 | Factor model regression results in different world regions. The column headers highlight 
which value weighted continental portfolio was used as dependent variable. The rows illustrate the regression results for the 
5 pricing factors. Robust standard errors were employed for all models in which heteroskedasticity was detected. The last 
two rows show the number of observations as well as the estimated R squared. Authors’ own calculation. 

 (1) (2) (3) (4) (5) (6) 
VARIABLES Asia Brown  Europe Brown Americas Brown Asia Green Europe Green Americas Green 
       
Market 0.566*** 0.849*** 1.188*** 0.507*** 0.844*** 1.740*** 
 (0.071) (0.071) (0.097) (0.127) (0.110) (0.299) 
SMB 0.069 -0.030 0.613** 0.611* 0.643** 0.120 
 (0.210) (0.198) (0.272) (0.356) (0.309) (1.189) 
HML 0.373** 0.521*** 0.985*** 0.128 -0.539* -1.562* 
 (0.152) (0.198) (0.271) (0.355) (0.308) (0.926) 
RMW -0.369 -0.347 -0.337 -0.618 -0.600 -1.951 
 (0.243) (0.270) (0.371) (0.485) (0.421) (1.208) 
CMA -0.281 0.154 0.175 -0.967* -0.152 -0.623 
 (0.257) (0.290) (0.399) (0.522) (0.453) (1.097) 
Constant 0.007*** 0.006** 0.005 0.023*** 0.016*** 0.031*** 
 (0.003) (0.003) (0.004) (0.005) (0.004) (0.011) 
       
Observations 120 120 120 120 120 120 
R-squared 0.506 0.647 0.693 0.273 0.456 0.388 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 

Results show that my results from table 3 are roughly stable across different world regions. As depicted 
in table 4, the brown outperformance is not as robust as the green outperformance as the American 
brown portfolio did not outperform significantly. Albeit being highly significantly positive, the green 
alphas show some interesting regional differences. The highest green alpha is obtained for the American 
regions (heavily dominated by the US). The lowest alpha is observed for the European region. 

 



15 
 

4.2 Pricing of climate transition risk in sector-specific portfolios 
Next, I also report results for the three climate sensitive industries. 

Table 5 | Factor model regression results for the industry portfolios. The column headers highlight 
which value weighted industry portfolio was used as dependent variable. The rows illustrate the regression results for the 5 
pricing factors. Robust standard errors were employed for all models in which heteroskedasticity was detected. The last two 
rows show the number of observations as well as the estimated R squared. Authors’ own calculation. 

 (1) (2) (3) (4) (5) (6) 
VARIABLES ICE Brown Utilities Fossil Energy  EV Green Utilities Renewable Energy 
       
Market 0.876*** 0.620*** 0.825*** 1.932*** 0.405*** 0.922*** 
 (0.077) (0.061) (0.069) (0.304) (0.079) (0.172) 
SMB 0.166 0.097 0.257 1.324 0.393* 0.900* 
 (0.215) (0.177) (0.193) (0.852) (0.220) (0.482) 
HML 0.803*** 0.191 0.493** -1.725** 0.037 -0.167 
 (0.215) (0.232) (0.193) (0.850) (0.220) (0.481) 
RMW 0.185 0.445* -0.626** -1.802 -0.414 -1.231* 
 (0.293) (0.253) (0.263) (1.162) (0.300) (0.657) 
CMA -0.786** 0.157 0.258 -0.303 -0.221 -1.248* 
 (0.316) (0.261) (0.283) (1.250) (0.323) (0.707) 
Constant 0.006** 0.005** 0.006** 0.026** 0.015*** 0.032*** 
 (0.003) (0.002) (0.003) (0.012) (0.003) (0.007) 
       
Observations 120 120 120 120 120 120 
R-squared 0.643 0.587 0.671 0.386 0.287 0.371 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 

As depicted in table 5 the aforementioned outperformance of green stocks compared to the market 
average as well as against the brown portfolios is highly robust across different climate sensitive 
industries. The brown industry portfolios also reinforce the finding of a small brown risk premium as 
brown industry portfolios consistently outperform the market as measured by the positive and 
significant alpha estimate. However, there are interesting industry-specific differences, especially for 
the green portfolios. Most notably, the highest outperformance of any portfolio is measured for the 
renewable energy portfolio with an alpha of .032, the lowest is measured for the green utilities (.015). 
The outperformance of the EV portfolio is in between with an alpha of .026. The market beta estimates 
are also in line with expectation since the market betas are lowest for brown and green utilities. The 
highest beta coefficients are measured for the ICE and EV portfolios, which makes sense given the 
cyclical nature of these industries. Interestingly, only the EV portfolio has a market beta above 1, 
indicating higher than average systematic risk. The bulk of the (insignificant) factor coefficients point 
in the expected direction or follow the trends from the baseline estimates. 

4.3 The Brown Minus Green factors 
Another way of analyzing the pricing of climate transition risk for climate sensitive portfolios is to 
create a BMG factor which is long the respective brown portfolio and short green portfolios. I create 
4 such factors, 1 baseline factor utilizing the two baseline brown/green portfolios and 3 industry-
specific BMG factors. The BMG factor is then used as the dependent variable in the Fama French 5-
Factor Model in order to test whether the green outperformance can be observed also when directly 
comparing the performance to the brown/green portfolios.  

 



16 
 

Table 6 | Brown Minus Green (BMG) factor regressions. The column headers highlight which value 
weighted BMG factor was utilized as dependent variable. The rows illustrate the regression results for the 5 pricing factors. 
Robust standard errors were employed for all models in which heteroskedasticity was detected. The last two rows show the 
number of observations as well as the estimated R squared. Authors’ own calculation. 

 (1) (2) (3) (4) 
VARIABLES BMG All BMG Transport BMG Utilities BMG Energy 
     
Market -0.331* -1.056*** 0.214*** -0.097 
 (0.188) (0.349) (0.075) (0.216) 
SMB -0.156 -1.157 -0.296 -0.643 
 (0.600) (1.035) (0.211) (0.579) 
HML 1.270** 2.528*** 0.153 0.659 
 (0.504) (0.818) (0.211) (0.627) 
RMW 0.907 1.987* 0.859*** 0.605 
 (0.592) (1.037) (0.288) (0.742) 
CMA 0.858 -0.483 0.377 1.506* 
 (0.655) (1.087) (0.310) (0.842) 
Constant -0.019*** -0.020* -0.010*** -0.026*** 
 (0.006) (0.012) (0.003) (0.008) 
     
Observations 120 120 120 120 
R-squared 0.376 0.253 0.209 0.252 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 

As shown in table 6, the alpha remains significant across all BMG models. Again, the highest relative 
alpha can be observed in the energy industry, utilities on the other hand (again) exhibit the lowest 
outperformance of green stocks. Annualizing the green outperformance in the baseline BMG model 
leads to an annual alpha value of ~ -23%. This extreme outperformance of green stocks is higher than 
any other estimate in the literature. Note that the alphas are negative since I have a portfolio which is 
short on green stocks. Interestingly, the BMG factor return cannot be explained by most other pricing 
factors. Most relevant in explaining the BMG factor returns are the market factor as well as the HML 
factor. The HML result mimics the aforementioned finding that brown portfolios carry a heavier weight 
in value firms. Nevertheless, the other pricing factors (with few exceptions) do not add significant 
explanatory power to the models. This is also highlighted by the rather low R2 values which indicate 
that the 5 pricing factors can only explain a small fraction of the variance in the BMG pricing factors. 
In other words: The BMG factor does not seem to correlate strongly with other known pricing factors 
which might indicate that a climate transition risk pricing factors might expand the explanatory power 
of common factor models since well-established pricing factors fall short in explaining the excess 
returns of companies in climate sensitive industries. 

4.4 Time specific results 
Most previous work on the pricing of climate risk on financial markets makes the implicit assumption 
that pricing remains roughly constant over time since they mostly use static regressions across the whole 
time frame. Given the highly dynamic nature of climate policies or technological development as well 
as the associated climate transition risk, this is a critical research gap to fill. I thus estimate rolling 
regression windows across my time frame, thereby I am able to capture time specific changes in the 
pricing of brown and green portfolios.  
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Figure 1| Alpha estimates from rolling regressions. The graph shows the rolling alpha regression results for 
the baseline green and brown portfolios with a 30-month rolling regression window. The estimated model is an Fama 
French 5-Factor model. The x axis shows the start date of the regression window, the y axis the alpha estimates. The red 
vertical line indicates the first time when a full regression window incorporates the time after the Paris Agreement of 
12/2015. 

Figure 1 shows the dynamic alpha estimates across time using 2.5-year regression windows. I focus on 
the alpha estimates as they nicely show how the market prices climate transition risk of green/brown 
portfolios differently across time. Most notably, the brown alpha estimates are rather constant over 
time, highlighting a constant risk premium of brown stocks across my dataset. One notable exception 
is the end of my time frame, when brown alphas are steadily rising. This is very different for my green 
baseline portfolio. The associated alpha estimates vary more strongly. Interestingly in the time after the 
Paris Agreement a clear trend emerges, while the brown alpha remains roughly flat, green stocks start 
a stark outperformance against the market as well as against the brown portfolio. This interesting 
finding might highlight the relevance of the Paris Agreement as a signaling event which strongly 
affected green firms, but did not impact brown companies equally strong. The aforementioned BMG 
factor is the difference between the brown and the green alpha over time. It follows from figure 1 that 
this factor was negative for most of my time series. The dynamic trends of the singular sector portfolios 
roughly follow the trends of the baseline portfolios, the figures can be found in the appendix (figures 
A1-A2). Another interesting question relates to the correlation of the brown and green portfolio over 
time. Based on figure 1 it seems like the performance of the two portfolios decouples to some degree 
after the Paris Agreement. In order to quantify this observation, I calculate the correlation coefficient 
of the brown and green portfolio before and after the Paris Agreement. The difference is quite strong, 
before the Paris agreement the correlation coefficient amounts to .69, after the Agreement the 
coefficient drops to .40. 

The observation that the brown outperformance largely stems from the end of my time series warrants 
the question whether the energy price shocks in the last years might explain the brown outperformance. 
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I thus estimate a reduced time series until 12/2020, excluding the time with exploding prices for coal 
gas and oil. 

Table 7 | Reduced factor regressions. The column headers highlight which value weighted portfolio was utilized 
as dependent variable. The rows illustrate the regression results for the 5 pricing factors. The time window start in 
01/2013 and runs until 12/2020, thus excluding the last two years of my full time series. Robust standard errors were 
employed for all models in which heteroskedasticity was detected. The last two rows show the number of observations as 
well as the estimated R squared. Authors’ own calculation. 

 (1) (2) (3) 
VARIABLES All Brown Reduced All Green Reduced BMG All Reduced 
    
Market 0.869*** 1.139*** -0.270 
 (0.056) (0.203) (0.205) 
SMB 0.292* 0.711 -0.420 
 (0.151) (0.514) (0.545) 
HML 0.555*** -0.388 0.943* 
 (0.163) (0.477) (0.501) 
RMW 0.061 -1.069 1.130 
 (0.248) (0.806) (0.868) 
CMA -0.194 -1.035 0.841 
 (0.272) (0.707) (0.689) 
Constant 0.002 0.024*** -0.022*** 
 (0.002) (0.005) (0.006) 
    
Observations 96 96 96 
R-squared 0.801 0.485 0.192 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 

Results are reported in table 7 and show that indeed, brown stocks now do not show any significant 
alpha estimate on all common significance levels. The green outperformance on the other hand, 
remains highly significant and the coefficient does not change strongly compared to the full time series. 
This indicates that the brown outperformance can be largely explained by a one-time event, namely the 
strongly rising energy prices leading to record profits for brown companies. 

4.5 The dividend channel 
I also utilized the two baseline portfolios to investigate another interesting pricing property, namely the 
dividend yield for both portfolios in 2023. I downloaded expected dividend payments per company for 
2023. As depicted in figure 2, the dividend payments vary quite substantially as the brown portfolio 
yield returns between 4% - 5% in 2023 while the green portfolios only yield roughly 1%. The findings 
are robust to the weighting methodology, i.e. equally or value weighted aggregation. Moreover, results 
are roughly similar for dividend distribution in 2022 
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Figure 2 | Expected Dividend Yields in 2023 for both baseline portfolios. The graphs highlights the 
dividend yield per portfolio for 2023 in percentages. 

 

4.6 Robustness tests 
The aforementioned results already contain some tests for the robustness of my results. Most notably, 
table 3 shows that my baseline results for alpha and market beta are robust against adding more/less 
well-established pricing factors. Table 4 shows the robustness of the results across different world 
regions. Table 5 highlights the robustness across different climate sensitive industries. Additionally, I 
also test how my results change when including different market factors. Changing the market factor 
to the SP 500 or the market factor from Kenneth French’s data library does not significantly affect the 
results for both baseline portfolios (table A1). As another robustness check, I change the weighting 
methodology and equally weight all constituents of the portfolios. In other words, I just consider the 
average return of all firms in the brown/green baseline portfolios. This reduces the weights of some 
mega-caps such as Tesla or Saudi Aramco but on the other hand, strongly increases the weights of very 
small companies. Results for the baseline green and brown portfolio remain roughly constant when 
changing the weighting methodology. Interestingly the market beta for the green portfolio drops 
substantially while the alpha for the brown portfolio loses some significance, again raising slight doubts 
about the robustness of the carbon alpha for the brown portfolio. However, the strong significant 
outperformance of the green portfolio as well as the BMG factor persists, showing the robustness of 
these results (table A2). Finally, I also estimate the rolling regressions with windows of 20 and 40 
months. The results are very similar to the chosen 30-month window (figures A3-A4). All results of the 
robustness tests can be found in the Appendix. Overall, the results reinforce my aforementioned 
findings and I conclude that my results are stable against various robustness tests.  

5 Discussion 
Summing up my findings, green portfolios show significantly higher excess returns than brown 
portfolios as well as the market average. This is largely due to the second half of my time window, after 
the global Paris Agreement of late 2015, which showed the ambition of all countries to radically 
decarbonize the economy with strong implications for high/low climate transition risk companies. 

0,00%

1,00%

2,00%

3,00%

4,00%

5,00%

6,00%

Brown Equally
Weighted Dividend

Yield

Brown Value
Weighted Dividend

Yield

Green Equally
Weighted Dividend

Yield

Green Value
Weighted Dividend

Yield



20 
 

Before the agreement both brown and green portfolios were highly correlated and only after the 
agreement the correlation significantly decreased and the green outperformance began. Brown 
portfolios on the other hand, did only underperform relative to the green portfolio but not to the 
market since they also exhibit significant positive alphas over the whole time frame. This 
outperformance disappears however, when I exclude the last years which brought unprecedented 
increases in global energy prices. My overall findings are robust across regions as well as three climate 
sensitive industries, i.e. the transportation, the utility and the energy sector. I chose these sectors due 
to their extreme climate policy sensitivity. 

Concerning the market betas, I find significantly lower betas for the baseline brown portfolios. The 
trend over time as illustrated by the rolling regressions results (figure A5 in Appendix) highlight roughly 
constant market betas for the brown portfolio and rising market betas for the green baseline portfolio. 
This is at odds with Monasterolo and de Angelis (2020) who find that the systematic risk (market beta) 
of green indexes drops significantly after the Paris Agreement. Since the climate transition risks for 
brown firms rises over time, they expect rising systematic risk for brown firms. An important related 
question rarely addressed in the literature is: whether climate transition risk is of systematic nature (and 
thus can be found in the market beta) or idiosyncratic (i.e. firm specific). My finding would rather 
support the latter option since I cannot find climate transition risk being reflected in high or rising 
market betas, however if climate transition risk is firm/technology specific, which I would argue it is, 
then one can ask whether this climate transition risk is compensated for. Finance theory states that only 
risk which cannot be diversified away is compensated for – however green or risk neutral firms offer 
the possibility to diversify away from climate transition risk, hedging against the climate transition risk 
of brown firms (e.g. Engle et al., 2020). Thus, one could argue that the market would not compensate 
for the climate transition risk in brown portfolios. However, that is not what other authors (e.g. Bolton 
& Kacperczyk, 2021a, 2021b) find empirically and what Pástor et al. (2021) predict theoretically. Thus, 
the climate transition risk of brown firms seems to be compensated for. I find some limited evidence 
for that as I find positive alphas of brown portfolios over the whole time series. However, when 
excluding the last years with skyrocketing energy prices, brown portfolios performed in line with the 
market, questioning the robustness of the brown outperformance. 

Turning to green firms, Pástor et al. (2021) postulate that investors are willing to pay a higher price for 
green firms since they offer two desirable properties. First, investors derive utility from holding green 
assets compared to brown assets as most investors have a taste for sustainable investments. Second, 
green assets can hedge investor portfolios against climate transition risk. These properties should 
(theoretically) lead to ex ante lower expected returns. In equilibrium, financial market participants are 
thus willing to pay higher prices for green firms, lowering their cost of capital and increasing their 
valuation while lowering their expected alpha. Brown firms should exhibit positives alphas in the long 
run as their additional risk should be compensated for. My model results show significantly positive 
and rising green alphas and the BMG factor strongly underperforms the market across my time period. 
However, the ex-ante equilibrium view of lower expected returns for green stocks is augmented by 
Pástor et al. (2021) with a dynamic view which nicely explains my results. Investors (consumers) can 
change their preferences unexpectedly towards green assets (green products/services) and thereby 
change the short run pricing trajectory of a BMG factor which in theory should return positive results 
as brown stocks carry higher expected returns. In times of such unexpected changes the BMG factor 
will underperform, since green assets are negatively correlated with this factor, they will outperform the 
market. The dynamic rolling regression results support the hypothesis that many readjustments of the 
BMG factor in the last years led to the strong outperformance of green stocks vs. brown stocks. While 
the brown alpha estimates remain roughly constant across time, the green alpha results vary strongly. 
More precisely, green stocks strongly outperformed after the Paris Agreement of 2016. The Paris 
Agreement is a perfect example of an event which might have influenced investor preferences 
unexpectedly towards green stocks, leading to a medium-term outperformance of green assets and 
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causing the BMG factor to yield negative returns across my time frame. Other major events which 
strongly support this hypothesis are the US Inflation Reduction Act, the European Green Deal or the 
election of Joe Biden as President of the United States replacing climate change sceptic Donald Trump. 
The dynamic element thus outweighed the expected return differentials. Additionally, the expected 
return premium for brown assets in 2013 was almost certainly lower than today as the taste for green 
assets also developed strongly over my time frame. Thus, from 2013-2016 brown and green stocks 
likely did not even have significantly different expected returns as the awareness about climate risks on 
financial markets only developed in the years after, when the high valuation of green stocks was built 
over time through significantly positive alphas compared to brown stocks. My result thus can thus be 
explained by the difference between realized and expected returns. While the return expectation of 
brown stocks is higher, realized returns of green stocks were higher across my time frame as the 
expectations about climate transition risks changed dramatically. However, only because I was able to 
show that green stocks outperformed, this does not imply that this trend will continue indefinitely as 
the expected returns for a BMG factor are positive today (Pástor et al., 2022). 

Pástor et al. (2022) discuss the difficulties of estimating expected equity returns as expected returns for 
stocks are not directly observable. They employ two approaches in order to substantiate their theoretical 
finding that green stocks should carry lower expected returns. First, they use ex ante data to calculate 
each stock implied cost of capital. Second, they use ex post data and climate concern index data. My 
results concerning the dividend differentials in 2023 between brown and green portfolios are further 
proof that expected returns are higher for brown high climate transition risk stocks as their dividend 
yields are substantially higher than the low yields for green stocks as well as the average yield of the 
MSCI world which were below 2% in the last years. The results indicate that investors expect higher 
payouts for holding riskier (browner) assets, in line with the findings of Pástor et al. (2022) as well as 
the theoretical prediction of Pástor et al. (2021). 

My findings are also in line with empirical results of van der Beck (2021), who also finds a significant 
positive alpha for an ESG sorted portfolio from 2016 until 2021. He shows that this result can be 
explained by financial flows towards sustainable assets, i.e. the investor channel explained above. Van 
der Beck (2021) can even show that the return of the BMG portfolio without the flows would have 
been negative, in line with the notion of lower expected returns for green stocks. Moreover, my results 
are strongly in line with Pástor et al. (2022) who also find higher realized returns for green assets, but 
lower expected returns for green assets vs. brown assets. However, the green outperformance is 
significantly higher than other estimates in the literature. This could be due to my industry/technology 
approach which only focusses on brown/green pure play firms which are doing a majority of business 
in extremely climate sensitive industries utilizing high/low-risk technologies, whereas for example 
Görgen et al. (2020), Bolton and Kacperczyk (2021) or Pástor et al. (2022) base their results on a larger 
universe of companies of which many are in not particularly climate sensitive, but carry high market 
capitalizations such as software companies. In other words, it is harder to argue that a climate related 
risk factor explains the variation in Apples returns (would be categorized as “green” due to low CO2 
emissions) than it is for Tesla. I would thus argue, that within industry variation due to firms 
technological differences in key for climate transition risk, but only in a few climate sensitive industries 
heavily targeted by climate policies. This is in line with the results of Sautner et al. (2020) that within 
industry variation is crucial when it comes to climate transition risk as their variance decomposition 
shows that most of the variation cannot be explained by country, industry or time fixed effects, but 
must stem from the firm level. I make the same argument, focusing on firms’ technological differences. 

Moreover, I was able to show that a BMG pricing factor constructed through “pure-play” brown and 
green companies in climate sensitive industries is not strongly correlated to other known pricing factors. 
This finding is in line with Görgen et al. (2020) who show that their BMG factor significantly improves 
the explanatory power of common pricing models in explaining large cross-sections of returns. 
Interestingly Görgen et al.’s (2020) BMG factor is only modestly correlated (coefficient estimate of .22) 
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to my BMG factor. This again shows the significant difference in my technology-based approach 
compared to common approaches utilizing ESG/CO2 data to identify high/low climate transition risk 
assets. It will be interesting to continuously study the returns of this BMG factor in order to test whether 
the theoretical prediction by Pástor et al. (2021) holds in the long run. Following this prediction, one 
would expect the BMG factor to start returning positive monthly alphas in the coming years. 

My findings are relevant for stakeholders involved on financial markets as well as climate politics. Most 
notably, Companies can learn that there seems to be a strong preference for green assets compared to 
brown ones, which unfolded over the last years after the Paris Agreement as highlighted by the 
outperformance of green stocks over brown stocks. Investors are willing to accept lower expected 
returns for green equity due to green preferences. This leads to a higher valuation for green firms, 
lowering their cost of capital. My TRBC based methodology might also be useful for investors to easily 
determine the climate transition risk exposure of their portfolios by separating firms based on their 
technology in different climate sensitive economic sectors. Investors who want to reduce the climate 
transition risk exposure of portfolios can use my BMG factor to estimate the climate risk of individual 
securities. If investors must hold certain sector exposures, my approach enables investors to also reduce 
climate transition risk exposure within sectors as I show for my three climate sensitive sectors, that 
both high and low-risk companies exist. Policymakers can learn that certain policy announcements 
seem to have a strong signaling effect for financial markets as the Paris Agreement really marked the 
turning point of the relative pricing of brown and green firms. My continental results show that the 
change in investors/consumer sentiment towards climate transition risk is highest in the Americas, 
which is quite logically as the US had the strongest change in climate sentiment over my time window. 
Starting with almost no strong climate legislation and Donald Trump as President, the US now has a 
democratic president which rejoined the Paris Agreement and put in place the most aggressive climate 
legislation in US history with the Inflation Reduction Act. In Europe on the other hand, stronger 
climate policies exist since a long time, explaining the smaller green alpha compared to the US. 

Finally, my findings are relevant for scholars interested in the global pricing of climate risks as I 
contribute to the ongoing work about the pricing of climate transition risks on financial markets both 
methodologically and empirically. I contribute methodologically by means of a newly proposed way of 
determining high/low climate transition risk companies by means of sectoral/technology classifications 
for financial pricing exercises. This approach is opposed to the widespread use of ESG or CO2 data 
for financial pricing models which problems I discussed at length in the literature review. Moreover, I 
contribute by supporting the theoretical prediction by Pástor et al. (2021) empirically as I track changes 
in alpha over a recent 10-year time window by means of rolling regression windows, thereby providing 
insights into the dynamic pricing of climate transition risk on global financial markets as opposed to 
only focusing on the US. Moreover, my results clearly show the importance of analyzing both green 
and brown asset prices in parallel as I find a very high negative alpha of 23% p.a. for the BMG factor 
which dwarfs previous estimates well below 5% (e.g. Bernardini et al. (2021) or van der Beck (2021)). 
This finding is very robust across different highly climate sensitive industries, world regions and 
different widely utilized factor models. The estimated BMG factor can be used to augment common 
pricing models in order to capture the significant fraction of returns which cannot be explained by 
common factor models, thereby potentially increasing the explanatory power of such models. I test the 
correlation of this factor with other common pricing factors and find the only the HML value factor is 
significantly correlated with the BMG factor, highlighting the potential value this novel factor can add 
in common pricing models.  Finally, I also use the most recent global data on monthly stocks returns, 
including the Covid-19 Pandemic as well as the energy price shock as a consequence of Russia’s attack 
on Ukraine. 

My approach is limited by two main issues. First, the utilization of the TRBC business activity 
classification is (admittedly) a rather simple approach to differentiate brown and green firms as it does 
not differentiate different shades of these colors. To some limited degree the industry portfolios remedy 
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this problem as one can argue that the fossil fuel portfolio clearly carries a higher climate transition risk 
compared to the ICE/Brown Utility portfolio which could change their technologies more easily. 
Nevertheless, a superior approach would analyze different business lines and subsidiaries of a company 
to gain a more granular picture of a climate relevant firm (Bressan et al., 2022). Due to the very limited 
climate transition risk data availability, such an approach is currently very time consuming as one would 
need to analyze company’s technology and revenue contributions separately for each business line. 
Future data disclosure regulation might make more granular assessment possible. A second limitation 
is the implicit assumption that there is no step change in the technologies of the firms over time as I 
only construct the portfolios once and do not reshuffle them annually since no time series of TRBC 
codes is available. The Chines auto manufacturer BYD illustrates this point as it changed the business 
model drastically in early 2022 by announcing to cease the production of ICE vehicles and solely rely 
on hybrid or electric power trains (Randall, 2022). Thus, going forward, I expect that BYD changes the 
TRBC business code to Electric (Alternative) Vehicles. Such changes will become increasingly more 
frequent as the climate transition continuous. However, as of the end of 2022 a complete reorganization 
of business technologies is still rare as most incumbent firms rather follow a long term evolutionary 
decarbonization schedule as opposed to radically changing technologies as highlighted by the 
continuously rising CO2 emissions. Additionally, a firm classified as brown today will have almost 
certainly been even browner 10 years ago. Thus, my approach might, at worse, underestimate 
(overestimate) the green (brown) outperformance when some TRBC-green firms in 2022 had a 
browner technology mix in previous years. Even BYD is correctly categorized as it earned the majority 
of revenues over my time frame with ICE vehicles and even in 2022 sold more hybrid cars with an 
engine than electric cars (Kane, 2023). It will thus be interesting to further study how TRBC codes for 
my group of companies change over time. 

6 Conclusion  
I utilize the TRBC business classification to categorize companies in three climate sensitive sectors into 
high/low-risk from a climate transition risk perspective. Thereby I complement ESG or CO2 based 
approaches which have been the focus of climate transition risk exposure categorizations. As a result, 
I create two baseline brown/green portfolios as well as 6 sectoral portfolios. Then I analyze the pricing 
of these portfolio against common risk factors over time. My results show that green stocks produce a 
highly significant double-digit annual alpha, especially in the 7 years following the Paris Agreement. 
This is well above all previous estimates and might be explained by my novel proposed methodology 
which can identify brown and green “pure-plays” in the most climate sensitive economic sectors. 
Opposed to most ESG funds, my portfolios do not closely mimic benchmarks which might explain 
the more extreme alpha estimates. This green alpha is robust across industry portfolios and might be 
explained by unexpected changes in investor and consumer preferences. Even though I was able to 
show a negative alpha for the BMG factor, this does not guarantee that green assets will continue to 
outperform green assets as I only analyzed realized returns. However, the return expectation today is 
very different from the return expectation in 2013 and rational investors today want to be compensated 
for the additional risk of holding brown assets, thus expecting higher returns of brown vs. green stocks. 
My dividend yield findings indicate that in expect return for brown portfolios today are indeed 
substantially higher compared to green portfolios. 

Future research in this rapidly expanding field should take future disclosed information such as the EU 
Taxonomy or the CSRD into account in order to overcome self-reported and error prone data. Once 
such data is released annually, scholars can create yearly rebalanced portfolios in order to robustly 
account for dynamic changes in the business model of certain firms. My research also indicated the 
relevance of the Paris Agreement for the pricing of brown and green firms. It would be interesting to 
follow up research of Monasterolo and de Angelis (2020) by more event studies in order to substantiate 
the findings from my rolling regressions that positive alphas for green stocks started to materialize after 
the agreement. Additionally, it would be interesting to further test the theoretical prediction by Pástor 
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et al. (2021), that green firms invest more than brown firms. My results for the CMA investment factor 
showed the expected signs in my baseline regressions but failed to produce significant results. Finally, 
it will be interesting to follow the performance of the BMG pricing factor to observe whether the 
realized outperformance of green stocks reverses as expected and whether the brown risk premium 
turns positive in the long run. Future research should definitely test the inclusion of a BMG pricing 
factor into asset pricing models as climate risks will increasingly play a central role on financial markets. 
Otherwise factor models might lack the power to explain cross-sectional returns in climate sensitive 
portfolios. 
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8 Appendix 
 

8.1 Value weighted baseline portfolios against other market factors 
 

Table A1 | Value weighted portfolios against alternative market factors. The column headers highlight 
which value weighted portfolio was utilized as dependent variable. The rows illustrate the regression results for the 5 pricing 
factors. Robust standard errors were employed for all models in which heteroskedasticity was detected. The last two rows 
show the number of observations as well as the estimated R squared. Authors’ own calculation. 

 (1) (2) (3) (4) 
VARIABLES All Brown  All Brown All Green All Green 
     
FF Market Factor 0.804***  1.136***  
 (0.054)  (0.190)  
SP 500   0.787***  1.092*** 
  (0.053)  (0.185) 
SMB 0.082 0.318** 0.187 0.520 
 (0.151) (0.151) (0.609) (0.597) 
HML 0.491*** 0.548*** -0.787 -0.688 
 (0.151) (0.150) (0.520) (0.517) 
RMW -0.341* -0.430** -1.234** -1.344** 
 (0.205) (0.208) (0.586) (0.583) 
CMA 0.107 0.080 -0.737 -0.809 
 (0.222) (0.223) (0.701) (0.686) 
Constant 0.006*** 0.005** 0.026*** 0.024*** 
 (0.002) (0.002) (0.006) (0.006) 
     
Observations 120 120 120 120 
R-squared 0.747 0.743 0.477 0.466 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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8.2 Equally weighted baseline brown and green portfolios   
 

Table A2| Equally weighted portfolios against the Fama French 5-Factor model. The column 
headers highlight which equally weighted portfolio was utilized as dependent variable. The rows illustrate the regression 
results for the 5 pricing factors. Robust standard errors were employed for all models in which heteroskedasticity was 
detected. The last two rows show the number of observations as well as the estimated R squared. Authors’ own calculation. 

 (1) (2) (3) 
VARIABLES BMG Equally All Brown Equally All Green Equally 
    
Market 0.100 0.869*** 0.769*** 
 (0.075) (0.070) (0.083) 
SMB 0.024 0.757*** 0.733*** 
 (0.211) (0.206) (0.232) 
HML 0.867*** 0.721*** -0.146 
 (0.211) (0.177) (0.231) 
RMW 0.448 -0.350 -0.798** 
 (0.288) (0.248) (0.316) 
CMA 0.127 -0.256 -0.382 
 (0.310) (0.240) (0.340) 
Constant -0.006** 0.005* 0.011*** 
 (0.003) (0.002) (0.003) 
    
Observations 120 120 120 
R-squared 0.375 0.756 0.565 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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8.3 Alphas of brown and green industry portfolios 
 

 

Figure A1| Alpha estimates for the value weighted brown industry portfolios with 30-month 
rolling regression windows. The x axis shows the start date of the regression windows and the y axis the alpha 
estimates. The red vertical line indicates the first time when a full regression window incorporates the time after the Paris 
Agreement of 12/2015. 
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Figure A2 | Alpha estimates for the value weighted green industry portfolios with 30-month 
rolling regression windows. The x axis shows the start date of the regression windows and the y axis the alpha 
estimates. The red vertical line indicates the first time when a full regression window incorporates the time after the Paris 
Agreement of 12/2015. 
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8.4 Alphas of the baseline portfolio with different rolling regression windows  

 

Figure A3 | Alpha estimates for the value weighted brown and green baseline portfolio with 20 
month rolling regression windows. The x axis shows the start date of the regression windows and the y axis the 
alpha estimates. The red vertical line indicates the first time when a full regression window incorporates the time after the 
Paris Agreement of 12/2015. 
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Figure A4 | Alpha estimates for the value weighted brown and green baseline portfolio with 40 
month rolling regression windows. The x axis shows the start date of the regression windows and the y axis the 
alpha estimates. The red vertical line indicates the first time when a full regression window incorporates the time after the 
Paris Agreement of 12/2015. 
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8.5 Dynamic Market Betas of the baseline brown and green portfolio  
 

 

Figure A5 | Rolling regression results for the value weighted brown and green baseline 
portfolio betas. The rolling regressions use 30 month rolling regression windows and the used model is the Fama 
French 5 market model. The x axis shows the start of the rolling window. The y axis shows the beta estimates. 
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8.6 Cumulative Returns of both baseline portfolios as well as the BMG Factor  
 

 

Figure A6 | Cumulative Returns of the value weighted brown and green portfolios as well as 
the BMG factor. The x axis shows the time dimension while the y axis shows the cumulative total returns over time. 
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