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Abstract: We assess the degree of spillovers or connectedness among the 16 constituents of the

IMF’s Energy Transition Metals (ETMs) index. We rely on regularized estimation of Vector Autore-

gressive (VAR) models and generalised forecast error decomposition to quantify spillovers among

ETMs. By calculating both static and dynamic measures of connectedness for commodity returns

and volatilities, we can gain insight into the patterns of shock transmission within the ETMs. Our

static analysis reveals that base and precious metals are net shock transmitters, while minor and

most battery metals are net receivers. Looking at the dynamics of connectedness with a rolling

window estimation of the VAR, we find that the system-wide, within-group, and between-group

connectedness measures are all time-varying. Notably, the aftermath of the COVID-19 pandemic

has seen a rising trend in the connectedness between precious and base metals and other ETMs. To

gain economic intuition for these dynamics, we correlate measures of connectedness with proxies of

global economic activity, uncertainty, and supply chain pressures. Our findings suggest that fluc-

tuations in connectedness may be linked to broader economic trends. Overall, our study provides

valuable insights into the interconnectedness of ETMs and the ways in which shocks can propagate

across different markets.
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1 Introduction

Critical raw materials (CRMs) are increasingly relevant in several technological domains

and having access to them might soon become as essential as having access to reliable

energy supplies. Broadly speaking, CRMs are economically and strategically important raw

materials characterized by a low degree of substitutability and high-supply risk. Lists of

CRMs are compiled and regularly updated by many governmental agencies (see e.g. U.S.

Department of the Interior, 2022; European Commission, 2020b; Nakano, 2021). European

Commission President von der Leyen announced a “CRMs act” in her 2022 State of the EU

address to tackle the growing importance of CRMs for achieving key policy targets, including

the twin green and digital transition.1

CRMs threat supply chains and hence might hamper the large scale deployment of

technologies in strategic sectors such as renewable energy, e-mobility, defence and aerospace

(European Commission, 2020a). In this paper we focus on a subset of raw materials – Energy

Transition Metals (ETMs) – that are input in the production of clean energy technologies

such as solar, wind, batteries and fuel cells. Borrowing from the burgeoning literature on en-

ergy security, we can conceptualize ETMs security focusing on four dimensions: availability,

affordability, efficiency, and environmental stewardship (see e.g. Metcalf, 2014; Sovacool and

Brown, 2010). While ETMs exhibit criticalities related to all of such dimensions, we mainly

focus on the interplay between availability and affordability.2

In terms of availability – defined as the ability to procure a sufficient, safe and diversified

supply of ETMs – Table 1 shows that the production of most of the metals considered

in this study is highly concentrated geographically, often in poor or developing countries.

Affordability relates – among other things – to the provision of ETMs at stable prices (Yergin,

2006). As shown in Figure 1 the prices of ETMs are highly volatile. Availability and

affordability factors are intertwined and both help explaining a large part of the volatility

observed in the prices of ETMs. In fact, the combination of low substitutability, low price

elasticity of supply and demand and a high concentration of production in few countries

1See https://ec.europa.eu/commission/presscorner/detail/ov/speech_22_5493.

2See Lèbre et al. (2020), Owen et al. (2022) and Zhang et al. (2022) for a broader perspective.
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implies that even small shocks arising on either side of the markets for ETMs can trigger

large price responses (Boer et al., 2021; Fally and Sayre, 2018; Graedel et al., 2015a,b).

The existence of liquid futures markets – performing their functions of price discovery

and risk mitigation – for ETMs could in principle contribute to ETM security by improving

their affordability for different classes of stakeholders, ranging from firms along the supply

chain of key technologies to countries. However, while for some of the ETMs in our sample

derivative markets are liquid and have a long history (e.g. many base and precious metals),

most of the metals that are in high demand for clean energy technologies, such as cobalt or

rare earth elements, do not have well developed futures markets.

We assess the degree of spillovers or connectedness among the 16 constituents of the

IMF’s ETM index. By calculating both static and dynamic measures of connectedness for

commodity returns and volatilities, we can gain insight into the patterns of shock trans-

mission within the ETMs. In this paper we follow the methodology put forth by Diebold

and Yilmaz (2009, 2012, 2014) and rely on a Generalised Variance Decomposition (GFEVD)

from VAR models to construct measures of directional spillovers among ETMs.

Alternatives ways to measure connectedness have been proposed in the literature. An

incomplete list of these alternative methods include principal components analysis and

Granger-causality approach of Billio et al. (2012) and the approach based on network

analysys techniques for time-series due to Barigozzi and Brownlees (2019); Barigozzi et al.

(2022). Moreover, other methods focus on the asymmetry of connectedness at different fre-

quencies or quantiles of the distribution (e.g. Baruńık and Křehĺık, 2018; Baruńık and Kley,

2019; Zhu et al., 2019).

GFEVD-based connectedness is probably the most widely used approach and has the

advantage of measuring spillover from each commodity to others without identification as-

sumptions or imposing a particular ordering of the endogenous variables in the VAR (see

Koop et al., 1996; Pesaran and Shin, 1998). Moreover, Diebold and Yilmaz (2014) highlight

the close relationship between connectedness measures based on GFEVD and key statistics

used in the field of network analysis. Estimating network effects is crucial because it is well

recognized that sectoral microeconomic shocks can propagate and eventually result in ag-

gregate fluctuations (see Acemoglu et al., 2012, as an example), and contagion from a large
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number of entities or markets may result in systemic crises (Bandt et al., 2012).

An application of the GFEVD-based methodology to commodity connectdness, focusing

on volatility spillovers, is provided by Diebold et al. (2018). Recent surveys of the literature

dealing with this methodology are provided by Balcilar et al. (2022) and Diebold and Yilmaz

(2023). As far as we know this paper is the first to focus on the connectedness of a large set

of ETMs. Measuring ETM connectdness is central for risk measurement and management

both from the perspective of private sector investment (e.g. for producers of clean energy

technologies) and for the formulation of public policies (e.g. connectedness tends to increase

during commodity-market crises).

The rest of the paper is organized as follows. Section 2 describes data and economet-

rics methods underlying our analysis; Section 3 presents our main results while Section 4

concludes. An Appendix with further details and results completes the paper.

2 Data and methods

2.1 Data

We source daily prices for 16 metals from Refinitiv Eikon. We analyse 7 base metals, 3

precious metals and 6 other minerals, that we define generically as “other ETMs”. These

metals are the constituents of the International Monetary Fund’s ETMs price index . Table

1 shows the list of commodities and the clean energy technologies for which they are used.

This table also reports the weight of each commodity in IMF-ETMs price index that is based

on the share of imports of each metal in total world commodity imports. As we can see,

traditional base metals – such as aluminium and copper – with a wide range of industrial

uses, get most of the weight in the IMF index. On the contrary, cobalt, rare earth elements

(REE), lithium and other minor metals – chiefly used in clean energy technologies – represent

a small share of global imports.3 Table 1 also reveals that the production of most minor

metals is highly geographically concentrated. For instance over 60% of the world production

of REE, silicon and vanadium is concentrated in China, while the Democratic Republic of

3Some of these metals – such as cobalt, copper, nickel, lithium and manganese – are referred to as battery
metals.
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Congo is the leader producer of cobalt.

Table 1: Energy transition metals: classification. sources and uses

Metal Group IMF weight Top Producer Main Uses

% (% world)

Aluminum Base 15.9 Australia (28) All sectors

Cobalt Base 0.6 Congo (DRC) (71) Li-ion batteries. Fuel Cells

Copper Base 34.3 Chile (26) All sectors

Lead Base 3.8 China (47) Wind. PV

Molybdenum Base 5.3 China (43) Wind. PV

Nickel Base 6.7 Indonesia (37) Li-ion batteries. Fuel Cells. PV. Wind

Zinc Base 6.1 China (32) PV

Palladium Precious 3.1 South Africa (40) Fuel Cells

Platinum Precious 4.4 South Africa (72) Fuel Cells

Silver Precious 7.0 Mexico (23) Fuel Cells. PV

Chromium Other 3.2 South Africa (44) Fuel cells. Wind

Lithium Other 0.3 Australia (55) Li-ion batteries

Manganese Other 3.7 South Africa (37) Wind. Li-ion batteries

REE Other 0.5 China (60) Wind. EV

Silicon Other 5.1 China (71) Li-ion batteries

Vanadium Other 0.2 China (66) Fuel Cells

Notes: data on the leading producing countries and the relative production as a share of world total are
provided by the USGS in the Mineral Commodity Summaries 2022 report. The main uses for each mineral
are taken from the Critical Raw Materials for Strategic Technologies and Sectors in the EU report by the
European Commission and refer to the use within the European Union. IMF weights represent the share of
imports of metal m in total global commodity import

Some base and precious metals in our sample have been traded in future exchanges for

many years, while other minerals – notably those labelled as “other ETMs” in the second

column of Table 1 – have a much shorter price history. The low liquidity of markets for these

ETMs implies that their prices change infrequently and hence working with daily or weekly

data is unfeasible. Daily data are then aggregated to construct monthly returns and realized

volatilities (RV) that span a sample running from June 2012 to December 2022, for a total

of 127 observations. Denoting daily real prices for metal m as Pm,td and daily log-returns as

rm,td = 100× log(Pm,td/Pm,td−1), we compute monthly RV as follows:4

RVm,t =
1

Dt

Dt∑
td=1

r2m,td
, (1)

where Dt is the number of days in month t. In subsequent analyses we rely on monthly

4Daily prices are deflated using the interpolated Consumer Price Index for the US.
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real returns rm,t = (1/Dt)
∑Dt

td=1 rm,td and log
√

RVm,t. We consider log of realized standard

deviations in that RVt is extremely skewed, while log
√

RVm,t is approximately Gaussian

for most commodities (see Andersen et al., 2001; French et al., 1987, for a discussion in

the context of stock market volatilities). For simplicity, from now on we keep on using the

shorthand notation RV, even though we rely on log
√

RVm,t in the analyses.

Figure 1: Price of Energy Transition Metals: June 2012 - December 2022
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Notes: for each commodity, the figure shows its price (black line) and the price index for the category of
metals (coloured line) to which it belongs. Prices have been normalised as follows: 100× Pmt/P̄

2016
m where

P̄ 2016
m is the average price of m for 2016. Metal groups are defined in Table 1.

Figure 1 shows the real prices of ETMs in our sample. The prices of base metals,

reported in first two rows of the figure, exhibit some cycles and are tend to be higher at

the end of the sample. Among precious metals – shown on the third row of Figure 1 –

silver displays the largest surge during the second part of the sample. Finally, other ETMs

prices are in general characterised by less variability, and for the majority of them there is

evidence for a price increase after the COVID-19 pandemic. The only exception is vanadium

price, exhibiting a remarkable spike between 2017 and 2020. Such a spectacular rise is due

to a set of events affecting both the supply and demand-side of the Chinese market. First,

in 2017 China enforced stricter environmental rules; as a consequence, inspections led to
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temporarily or even permanently, close some vanadium producers. Moreover, in 2018, China

released a new standard for high-strength reinforcing bars. These were required to have a

higher percentage of vanadium and hence increased overall domestic consumption of this

metal. Further graphs and details about the data are reported in Appendix A.

2.2 VAR estimation

Our measures of connectedness are obtained with the following procedure:

1. Estimation of Vector Autoregressive models of order p – VAR(p) – for returns and RV.

2. Computation the connectedness measures based on the generalised forecast error vari-

ance decomposition (GFEVD). See Section 2.3

To obtain connectedness measures based on the GFEVD, the first step is to estimate VAR

models for monthly returns and RV of 16 ETM. While we do include a constant in our

specification, for ease of notation we now consider a zero-mean VAR process:

yt =

p∑
ℓ=1

Aℓyt−ℓ + ut, (2)

where yt is an M×1 vector with the m-th element corresponding either to rmt or log
√

RVm,t,

ut ∼ (0,Σ) and Aℓ is an M × M matrix of coefficients. The choice of the lag order, p, is

critical in that the number of coefficients to be estimated is M + M2p and hence grows

quadratically with p. For instance, with M = 16, a VAR(3) model involves estimating 784

coefficients.

We handle dimensionality issues estimating VAR models with an adaptive elastic-net

penalty (Zou and Zhang, 2009) which involves both shrinkage and selection. The penalised

estimation approach induces sparsity in the coefficient matrices Aℓ. As noted in Nicholson

et al. (2017), taking into account the sparsity patterns allows to address over-parametrisation

in VAR models without having to select a low lag order p. In low-dimensional settings, the

VAR model in Equation (2) is estimated via Ordinary Least Squares. However, as M and p

increase, reducing the parameter space of the VAR becomes essential. The adaptive elastic-
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net consists in adding to Equation (2) an appropriate penalty term. Specifically, fitting a

sparse VAR involves solving the following penalised estimation problem:

min
A

T∑
t=1

∣∣∣∣∣
∣∣∣∣∣yt −

p∑
ℓ=1

Aℓyt−ℓ

∣∣∣∣∣
∣∣∣∣∣
2

F

+ λPy(A) for λ ≥ 0, (3)

where ||·||F denotes the Frobenius norm5 and Py(A) represents the penalty structure applied

to the coefficient matrices A = [A1, . . . ,Ap]. The adaptive elastic-net VAR estimator is

imposes the following penalty to Equation (3):

Py(A) = α||A||1 + (1− α)||A||22, for 0 ≤ α ≤ 1. (4)

The parameter α measures the trade-off between LASSO and ridge penalties in Equation

(4). When α = 1, the penalty function yields the LASSO estimator (Tibshirani, 1996). On

the other hand, as α → 0, the LASSO penalty shrinks toward 0, the elastic-net becomes

closer to ridge regression (Hoerl and Kennard, 1988). The optimal penalty parameters λ and

α can be determined using cross-validation, allowing for a completely data-driven approach.6

Figure 2 shows the sparsity pattern for the estimated matrices of coefficients in the case

of a VAR(4) for returns. As we can see, elements along the main diagonal of Â1 have darker

shades, while off-diagonal elements are often shrunk toward zero. It is worth noting that

within this framework, VAR(p) denotes a VAR with a lag order at most equal to p, and the

effective lag order is determined equation by equation by the penalty function (see Nicholson

et al., 2017, for further details).

5We make use to the following definitions. The Frobenius norm of an (Z × K) matrix B is defined as

||B||F =
√∑Z

z=1

∑K
k=1 |bzk|2. The 1-norm is ||B||1 = max

1≤k≤K

∑Z
z=1 |bzk| and the 2-norm can be written as

||B||2 =
√
λmaxB∗B, where λmax is the maximum eigenvalue of B∗B and B∗ is the conjugate transpose of

B.

6We set α equal to (1 +M)−1 ≈ 0.059. Then, the optimal λ̂ is selected from a grid of values λ1, . . . λn

via a rolling procedure, between times T1 = T/3 and T2 = 2T/3. The final λ̂ is the value that minimises

the Mean Squared Forecast Error. The grid of values for the choice of λ̂ is specified by selecting the grid
depth and the number of grid values. We set for the returns analysis the grid depth at 50 and the number
of values to 10, whereas for RV we opt for an increased grid depth of 500.
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Figure 2: VAR model for returns: sparsity

Â1 Â2 Â3 Â4

Notes: colored shades indicate active coefficients, with darker shades referring to parameters that are larger
in magnitude. White areas denotes coefficients that have been set to zero.

2.3 Measuring connectedness

Our connectedness analysis relies the GFEVD of the VAR as proposed by Diebold and Yilmaz

(2009, 2012, 2014) in a series of papers. The GFEVD does not require orthogonalising shocks

and is invariant to the ordering of the variables in the VAR:

θij(H) =
σ−1jj

∑H−1
h=0 (e′iΦhΣej)

2∑H−1
h=0 (e′iΦhΣΦ′hei)

H = 1, 2, . . . and i, j = 1, ..., N (5)

where Σ is the covariance matrix of the σjj the standard deviation of the disturbance of

the j-th equation, ej is a selection vector with one as j-th element and zero otherwise and

the matrices Φk are derived from the moving average representation of the VAR model in

Equation (2).7 Since the variance shares do not sum to one (i.e.
∑M

j=1 θij(H) ̸= 1), we

consider the following normalization:

CH
i←j ≡ θ̃ij(H) = 100× θij(H)∑N

j=1 θij(H)
. (6)

The generic element CH
i←j ≡ θ̃ij(H) is a measure of (gross) pairwise directional connectedness

from j to i; it measures the percentage contribution of mineral j to mineral’s i generalised

forecast error at horizon H. Note that in general CH
i←j ̸= CH

j←i. Armed with pairwise

directional connectdness measures, we can compute the following statistics (from now on we

7A stable VAR process can be rewritten in moving average form as follows: yt =
∑∞

k=0 Φkut−k, where

Φ0 = IM and Φk =
∑k

ℓ=1 Φk−ℓAℓ for k = 1, 2, . . . and Aℓ = 0 for k > p.
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drop the H superscript for ease of notation):

Cij = Cj←i − Ci←j (Net-Pairwise) (7)

Ci←• =
1

M

M∑
j=1
i ̸=j

θ̃ij(H) (From) (8)

C•←j =
1

M

M∑
i=1
i ̸=j

θ̃ij(H) (To) (9)

Ci = C•←i − Ci←• (Net) (10)

C =
1

M

M∑
i=1

M∑
j=1
i ̸=j

θ̃ij(H) (Total). (11)

Notice that net pairwise connectedness in Equation (7) differs from gross pairwise directional

connectedness in Equation (6). First, while there are (M2−M)/2 net pairwise connectedness

measures, there are M2 gross pairwise connectedness measures. In our framework, “gross”

pairwise directional connectedness represents a measure of bilateral spillovers, whereas its

“net” counterpart allows to divide minerals into net receivers and net transmitters of shocks.

Measures in Equation (8) and (9) are often labelled respectively as “from” and “to” con-

nectedness, since they define the transmitted and the received spillover for the i-th mineral,

and correspond to the off-diagonal row and column sums of the connectedness table. Total

or system-wide connectedness simply corresponds to the sum of from – or to, equivalently –

directional connectedness. Note that
∑M

j=1C•←j =
∑M

i=1Ci←• = C.

Connectedness and network analysis. The connectedness table, (CT), is a (M +1)× (M +1)

matrix with Ci←j in the first M rows and columns. The M+1-th column (row) reports from

(to) connectedness, while system-wide connedctedness appears in the lower right corner.

Diebold and Yilmaz (2014) show that the GFEVD represents the adjacency matrix of a

directed weighted network.8 Specifically, the GFEVD delivers a matrix whose entries capture

the strength and direction of spillovers between commodities. Moreover, it can be shown

8Note that, in general, a graph or adjacency matrix A has elements aij that indicate edges from i to j.
On the contrary, in our approach each entries of the CT measures a spillover from j to i.
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that from, to and system-wide connectedness are equivalent to key statistics used in the

network literature (e.g. in-degrees, out-degrees and mean degree).

Connectedness within and across groups. In order to capture the differential impact of

different groups of commodities, the connectedness table (CT) is aggregated into blocks that

correspond to base, precious, and other metals, respectively. To this end, we define a group

index vectorG of size (M×1) that assigns each of theM commodities to a group g = 1, 2, 3.9

To compute the within-group connectedness of each group, we sum all the elements in the

connectedness table that pertain to that group, net of the contribution of own shocks to

GFEVD:

Cg←g =
1

M

M∑
i=1

M∑
j=1
j ̸=i

Ci←j · I(Gi = g) · I(Gj = g), for g = 1, 2, 3, (12)

where I(Gi = g) is an indicator function that is equal to 1 if Gi = g and 0 otherwise.

Summing over g we get the system-wise within-group connectedness : Cwithin =
∑3

g=1Cg←g.

Connectedness across groups can be defined as follows:

Ck←z =
1

M

M∑
i=1

M∑
j=1

Ci←j · I(Gi = k) · I(Gj = z), for k, z = 1, 2, 3 with k ̸= z. (13)

Notice that with three groups there are 6 different cross-group connectedness measures.

System-wide cross-group connectedness is equal to Cbetween =
∑3

k=1

∑3
z=1
k ̸=z

Ck←z. It follows

that: C = Cwithin + Cbetween. The distinction between connectedness within and across

groups is illustrated in Figure 3.

To and from group-connectedness. To connectedness for group g is simply the sum of to

connectedness for metals in group g:

C•←g =
M∑
j=1

C•←j · I(Gj = g). (14)

9In our setting, the commodities are ordered according to the group they belong to, with the first 7 entries
of G identifying base metals and being equal to one, entries 8-10 identifying precious metals and being equal
to two, and the remaining 6 entries identifying other metals and being equal to three.
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Similarly, from connectedness for groups is:

Cg←• =
M∑
i=1

Ci←• · I(Gi = g) (15)

It follows that C =
∑3

g=1C•←g =
∑3

g=1Cg←•.

Figure 3: Connectedntess within and between groups
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3 Results

The VAR lag order, p, is equal to 4 in the case of returns, whereas we set p = 3 for RV. We

report results based on the GFEVD atH = 3 months horizon.10 Since returns and volatilities

measure different economic concepts, so does connectedness among them. Connectedness

10We have increased p up to 12, but this leads to a very low fraction of active coefficients, resulting in a
highly sparse VAR. We conclude that 4 lags capture an adequate amount of autocorrelation in the case of
ETM returns, while for RV, exhibiting larger sparsity, 3 lags are sufficient. As a robustness check, we have
also computed system-wide connectedness considering different horizons. Specifically, we set H = 4, 6, 12,
and conclude that connectedness of both returns and RV is not particularly sensitive to the choice of H.
These results are available from the authors upon request.
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for returns relates to changes in expectations, whereas connectedness for volatilities captures

the fear and uncertainty of investors.

While we highlight the differences between results when appropriate, we mainly focus on

connectedness for volatilities. We give more weight to the analysis of volatility connectedness

for two reasons. Firstly, when examining groups as well as individual ETMs, the static

analysis of connectedness for volatilities and returns produce comparable results. Secondly,

understanding volatility connectedness is critical for real-time crisis monitoring. In fact,

volatilities tend to move together only during times of crises and are often more responsive

than returns which, on the contrary, move together in both downturns and upswings. The

full set of results is available in Appendix B.

3.1 Full sample connecteness

Starting from the CT, we compute the from, to and net connectedness for RV as defined in

Equations (8), (9) and (10) and display them in Figure 4 where base, precious and other

ETMs are clustered and represented with different colors.

Figure 4: To, from and net connectedntess – volatilities
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Base and precious metals exhibit greater from and to connectedness, whereas the other

ETMs transmit and receive less volatility spillovers. Connectedness is thus stronger for the

first two groups, while other ETMs are to some extent less sensitive to base and precious

metal market dynamics. Moreover, other ETMs also exhibit a degree of from connectedness

that is generally higher than the degree of to connectedness, suggesting that they are net

12



receivers of shocks.

As a matter of fact, metals in the “other ETMs” group – with the exception of silicon –

have a negative net directional connectedness, and hence they are net receivers of volatility

spillovers. On the contrary, two precious metals out of three - namely, silver and palladium

- are net transmitters of shocks. Results for base minerals are mixed, with four out of seven

metals being classified as net transmitters of shocks. It is worth noting that copper and zinc

have the highest degree of from and to connectedness among base metals. When analysing

spillovers for returns, copper is confirmed to be the most connected metal, thus it seems to

be the principal driver of markets dynamics for ETMs.

We summarise the full-sample connectedness analysis for volatilities in Figure 5. The

heatmap in Figure 5a represents the volatility CT for groups of ETMs. Within-group con-

nectedness (net of own connectedness for each metal) can be read along the main diago-

nal, while off-diagonal elements of the heatmap capture volatility spillovers across groups.

Within-group spillovers are largest for base metals, while those for precious and other ETMs

are much smaller and comparable in magnitude; this suggests that these two markets receive

a large share of volatility spillovers from the base metal group. Figure 5b reports the to, from

and net group-connectedness, confirming the results obtained with individual commodities.

Base and precious metals are overall net transmitters, while other ETMs are net receivers

of shocks.

Some interesting facts also emerge from the CT for volatilities that appears in Appendix

A. Diagonal elements are in general lower for base and precious metals, and higher for

minerals classified as “other ETMs”. This means that other ETMs variability is more self-

explained with respect to the other two metal categories. The only exception is molybdenum

that, notwithstanding being classified as base metal, has a degree of self-explained volatility

as high as other ETMs. Off-diagonal elements range from the very high levels of pairwise

directional connectedness measured from zinc to lead and from palladium to platinum (more

than 20%) to the marginal and often negligible connectedness arising from other ETM to

base and precious metals (e.g. silicon and vanadium transmit around 1% of the RV to zinc

and silver). Crucially, the opposite is not true, as the connectedness from any of the base

and precious metals to other ETM is on average larger, denoting a remarkable asymmetry.
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Figure 5: Full sample group connectedness measures for volatility

(a) Within and cross group connectedness
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Notes: panel (a) shows within group connectedness along the main diagonal, while off-diagonal elements are
cross group connectedness measures. Panel (b) shows the to, from and net connectedness statistics for groups
of metals. Colored areas refer to the off-diagonal statistics, whereas the white areas denote the statistics
comprehending the diagonal elements.

Since the visualization of the pairwise connectedness measures is easier when represented

via network graphs, the remainder of this discussion is delayed to Section 3.2.

Lastly, we focus on full-sample total or system-wide connectedness, as defined in Equa-

tion (11), which is equal to 44.93% for returns, and to 43.53% for RV. These results are in

line with those of Diebold et al. (2018), estimating a total connectedness among commodity

prices at 40%. This implies that almost half of metals variability uncertainty originates

by “non-own” shocks. We can further disentangle total volatility connectedness measur-

ing within and between connectedness: 23.02% of the connectedness arises within the same

group of ETMs, whereas the 20.51% of system-wide connectedness originates across groups.

3.2 Network visualisation

To better display the results, we consider the network representation of the CT in Figure

6.11

11We use the Gephi open-access software available at https://gephi.org/
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Figure 6: Network visualisation for ETMs returns and RV connectedness – June 2012 -
December 2022

(a) Returns
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Notes: size of the nodes is determined by to connectedness. Arrows and edges refer to the net-pairwise
connectedness above the median.

To improve the network visualisation, we rely on net-pairwise statistics Cij to determine

the arrow direction that points towards net receivers of shocks. Visual cluttering is reduced

by dropping arrows associated to metals with positive net-pairwise connectedness below the

median. The size of arrows and edges is also proportional to net-pairwise connectedness,

while node size is determined by to connectedness C•←j. Lastly, node colour reflects the

grouping of metals into base (blue), precious (orange), and others (green). We rely on the

ForceAtlas2 algorithm (Jacomy et al., 2014) that finds an equilibrium in which repelling and

attractive forces among nodes are balanced. The nodes naturally repulse each other, whereas

links attract nodes with different forces, proportional to net-pairwise connectedness.

It is interesting to note that, even though we provide three ex-ante defined clusters, the

completely data-driven algorithm groups together the base, precious and other ETM metals,

both in the case of returns and RV analyses. The only exceptions are given by molybdenum

and cobalt, considered as base metals by the IMF but part of the other ETMs according to

the connectedness features both in the case of RV and returns connectedness.

As for connectedness for volatilities shown in Figure 6b, chromium, rare earth elements

and lithium are closer to base and precious metals, whereas when analysing connectedness

in returns, they are grouped among the other ETMs. Base and precious metals have more

weight in the network and are more connected than other ETMs. This can be appreciated
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by focusing on the size of the nodes and the number of arrows originating from each node,

respectively.

3.3 Dynamic rolling sample connectedness

Despite the static connectedness analysis provides useful tools to measure the average de-

gree of connectedness, it is important to take into consideration the fact that the degree of

connectedness may change over time. Figure 7 reports the system-wide returns and volatil-

ity connectedness obtained with a rolling window estimation approach.12 The figure also

highlights important dates associated with key events when we see sudden peaks in connect-

edness.

Return connectedness from mid-2017 is always above the static full-sample average of

44.93%, suggesting that connectedness among the ETMs was lower in the beginning of the

sample (i.e. 2012 – mid-2017) and has recently increased. Before the Covid-19 outbreak,

return connectedness seems on a slightly decreasing path, while after the minimum, regis-

tered around 2020, there is again a surge in total connectedness among ETMs. Volatility

connectedness dynamics is downward sloped until the end of 2020. Thereafter, system-wide

connectedness of ETMs RV seem on an increasing trend. Surprisingly, we do not find evi-

dence for an increase in RV connectedness during the only recession within our sample. This

may be due to the particular features of the 2020/21 slowdown, characterised by high levels

of uncertainty but also by an umprecedent economic freezing (i.e. production, trade and

consumption dramatically dropped, affecting almost all markets around the world). The

announcement of tarrifs on US aluminium imports by president Trump in March 2018 and

the short squeeze in the London Metal Exchange’s nickel market in March 2022 are both

associated with a subsequent drop of RV connectedness. Other than these metal-related

events, RV total connectedness responds negatively to the Brexit confirmation at the end

of 2019 and to the Covid-19 spread in March 2020, whereas after the Russian invasion of

Ukraine in February 2022 there is a positive peak in connectedness.

12We set, as for the static full-sample analysis, a VAR(4) in the case of returns and a VAR(3) for RV,
using a rolling window of 60 observations. Finally, we consider H = 3, 4, 6, 12, but report only results for
H = 3 given the marginal and negligible differences in the estimated connectedness.
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Figure 7: Retuns and volatility connectedness - rolling sample
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Additionally, we consider the rolling-sample group connectedness for both returns and

volatility of ETMs. Main results are shown in Figures A5, reporting the total, within and

between system-wide connectedness. It is interesting to note that the total connectedness –

both of returns and RV – mimic the evolution of the between connectedness, meaning that

cross-group spillovers, rather than within-group ones, are determinant in shaping the final

time-varying system-wide connectedness.

Finally, we report in Figure A6 the net connectedness for each cluster of metals. Overall,

the dynamics of the total connectedness in returns or RV are closer to the net connectedness

of base metals, which shows the same pattern. On the contrary, the evolution of precious

metals and other ETMs net connectedness is not in line with the total connectedness fluctu-

ations, either if considering returns or volatilities. We believe this is a further confirmation

of the relative importance of base metals in the ETMs system of commodities.

3.4 Drivers of connectedness

To better understand the drivers of total connectedness for ETMs, we consider its correlation

with different variables. Specifically, since connectedness in returns should be associated

to fluctuations in the business cycle, we focus on the correlation between the estimated

time-varying return connectedness (Cret
t ) and the Global Economic Conditions Indicator

(GECON) of Baumeister et al. (2022). We further examine the correlation between Cret
t
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and the Global Supply Chain Pressure Index (GSCPI) of Benigno et al. (2022), since this

last indicator should capture fluctuations strongly associated with commodities, including

ETMs. As for RV connectedness (CRV
t ), we focus on proxies of economic uncertainty. In

particular, we analyse the correlation of CRV
t with the Global Economic Policy Uncertainty

(GEPU) index (Davis, 2016) and the Trade Policy Uncertainty (TPU) indicator proposed

by Caldara et al. (2020).13 Figure 8 shows the selected indices together with returns and RV

time varying connectedness measures.

Figure 8: Time-varying connectedness, economic activity, uncertainty and supply chain pres-
sure
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Interestingly, connectedness for returns increases during the Covid-induced recession of

2020, when the GECON index exhibits a severe drop. After the Covid-19 pandemic, however,

the degree of connectedness for returns seems positively correlated with the economic activity

(top-left panel). On the contrary, we fail to detect statistically significant correlation between

connectedness for ETMs returns and the global supply-chain pressure (top-right panel).

Focusing on the RV connectedness, it is clearly shown that, whereas at the beginning of the

sample CRV
t negatively correlates with the economic uncertainty, starting from the mid-2021

13We also consider the VIX index, but since its dynamics are similar to the evolution of the GEPU, we
show results considering the GEPU only.
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the two indicators are both on a rising pattern (botto-left panel). A similar behaviour is

observed also for the VIX index, here not reported to keep the discussion concise. On the

contrary, it is hard to detect some kind of co-movement between the trade policy uncertainty

indicator and ETMs volatility connectedness (bottom-right panel). By considering a simple

leads-and-lags analysis of the correlation coefficients between the time-varying connectedness

and the selected measures in Figure 8, we end up to the conclusion that in fact, the only

significant drivers of the system-wide connectedness are the GECON, for what concerns Cret
t ,

and the GEPU, for CRV
t (see Figure A7).

3.5 Alternative measures of connectedness

As a robustness check, we also compare our methodology with an alternative measure of

connectedness, specifically we derive the time-varying system-wide connectedness for returns

and volatilities by using the Principal Component Analysis, as proposed by Billio et al.

(2012). Since the intuition of PCA is that the variance-covariance matrix of the variables

can be summarised by the first few eigenvalues, we extract the first principal component as a

driver of all the returns and volatilities variation during the rolling sample. This implies that

the extracted PCs explain the majority of the common movement between the 16 returns or

RV, resulting in a different statistical proxy of the connectedness degree.

Results are reported in Figure 9, showing that connectedness in returns may be affected

by different definitions and slightly varies with the two statistical methodologies, whereas the

estimates of RV connectedness appear remarkably similar, regardless the used approach. The

different dynamics of the two connectedness measures reflect the intrinsic way in which they

are built. For instance, while the total connectedness as proposed by Diebold and Yilmaz

(2009) sums the received (or transmitted) spillovers for all the considered commodities, the

PC-based connectedness extracts the information from a few eigenvalues of the variance-

covariance matrix. The evolution of Cret
t reflects most of the movements in base metals net

connectedness, as argued above. This comes straightforwardly from the major weight these

commodities’ spillovers play among all the other considered minerals. On the contrary, the

PC-based connectedness of returns seems more in line with the pattern of precious metals
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Figure 9: Time-varying connectedness and measures of systemic risk
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Notes: Since the PCA requires a prior standardisation of the variables, also our measures of connectedness,
Cret

t and CRV
t have been rescaled, in order to make the comparison possible.

net connectedness, shown in Figure A6.

4 Conclusions

We have estimated return and volatility spillovers for 16 ETMs relying on the connected-

ness approach of Diebold and Yilmaz (2009, 2012, 2014). Specifically, we consider a sparse

VAR with an elastic-net structure, and then construct our connectedness measures from the

Generalised Forecast Error Variance Decomposition, which is independent from variables

ordering.

Static full-sample connectedness analysis shows that base and precious metals transmit

shocks to the other ETMs that are net receivers. By splitting the 16 commodities in three

groups – defined, following the IMF, as base and precious metals, and other ETMs – we

demostrate that almost half of the connectedness originates within the group, whereas the

other half is due to cross-group spillovers.

Considering the dynamics of connectedness – obtained with a rolling window estimation

of the VAR – we demonstrate that the system-wide volatility connectedness has increased
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after the COVID-19 outbreak. The system-wide connectedness of ETM returns is positively

correlated with the economic activity, whereas volatility connectedness seems to be more

related to global economic policy uncertainty. Finally, alternative measures of connectedness

may lead to slightly different results, but our results seem overall robust to the different

definition of connectedness based on principal components.
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transition minerals and their intersection with land-connected peoples. Nature Sustain-

ability, pages 1–9.

Pesaran, H. M. and Shin, Y. (1998). Generalized impulse response analysis in linear multi-

variate models. Economics Letters, 58(1):17–29.

Sovacool, B. K. and Brown, M. A. (2010). Competing dimensions of energy security: an

international perspective. Annual Review of Environment and Resources, 35:77–108.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society: Series B (Methodological), 58(1):267–288.

U.S. Department of the Interior (2022). 2022 Final list of critical minerals. Federal Register,

87 FR 10381, 10381-10382. Available online at: https://www.federalregister.gov/

documents/2022/02/24/2022-04027/2022-final-list-of-critical-minerals.

Yergin, D. (2006). Ensuring energy security. Foreign affairs, 85(2):69–82.

Zhang, L., Chen, Z., Yang, C., and Xu, Z. (2022). Global supply risk assessment of the

metals used in clean energy technologies. Journal of Cleaner Production, 331:129602.

24

http://www.jstor.org/stable/resrep30033
http://www.jstor.org/stable/resrep30033
https://www.federalregister.gov/documents/2022/02/24/2022-04027/2022-final-list-of-critical-minerals
https://www.federalregister.gov/documents/2022/02/24/2022-04027/2022-final-list-of-critical-minerals
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A Descriptive statistics

Here we report the log of the realized volatility in standard deviations for the 16 ETMs over

the entire sample (Figure A1) and additional information considering aggregation of the 16

commodities in three groups. In particular, Figure A2 shows the price indices and the RV

for each group (base metals, precious metals, other ETMs).

Figure A1: Log realized volatility of energy transition metals: June 2012 - December 2022
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Figure A2: Energy Transition, Base, Precious and Other Metals: price indices and volatilities
June 2012 - December 2022
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(b) Log Realized Volatilities
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Notes: price indices and log realized standard deviations for each category of metals. Price indices and
volatilities shown in the graphs are computed as cross-sectional averages of the underlying series. Prices
have been normalized as follows: 100 × Pmt/P̄

2016
m where P̄ 2016

m is the average price of m for 2016. Metal
groups are defined in Table 1.
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B Additional tables and figures

This Section reports the connectedness tables for eturns and RV of the 16 ETMs (Tables A1

and A2). Additionally, Figures A3 and A4 focus on from, to and net connectedness statistics

for returns, not reported in the paper. Figure A5 disentangles the systemwide connected-

ness for returns and RV into within and between connectedness, obteined by considering

group connectivity. Figure A6 shows the dynamics of the net connectedness by group over

the rolling sample. Figure A7 reports the leads and lags correlation analysis between the

estimated connectedness and some selected indicators of economic activity, uncertainty and

supply-chain pressure. Finally, Figure 9 compares the Diebold and Yilmaz (2009, 2012,

2014) methodology with alternative measures of connectedness considering systemic risk

(specifically Billio et al., 2012, considering Principal Components within a VAR).
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Figure A3: Full sample group connectedness measures for returns

(a) Within and cross group connectedness
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(b) To, from and net connectedness
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Notes: panel (a) shows within group connectedness along the main diagonal, while off-diagonal elements
are cross group connectedness measures. Panel (b) shows the to, from and net connectedness statistics for
groups of metals. Colored areas refer to the off-diagonal statistics, whereas the white areas denote statistics
comprehending the diagonal elements

Figure A4: To, from and net connectedntess – returns
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Figure A5: Time-varying Connectedness: total, within and between groups

(a) Returns
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Figure A6: Time-varying net connectedness by groups
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Figure A7: Leads and Lags correlation analysis

(a) Returns connectedness correlation
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Notes: red bars highlights the correlation coefficient and relative standard deviations for different leads (k
up to 3) and lags (k up to -3).
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