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1. Introduction

In the past decade or so, a number of policies have been promulgated at the federal

and state levels to move the United States (US) economy towards less reliance on fossil

fuels. A number of these policies focus on the transportation sector. At the federal level,

for example, the Renewable Fuel Standard (RFS) mandated that 36 billion gallons of

renewable fuels (per year) are in use by 2022 (U.S. Energy Information Administration,

2013). At the state level, California has adopted the “Low Carbon Fuel Standard” (LCFS),

which requires a 10% reduction in the carbon intensity of motor vehicle fuels by 2020.

Both policies are likely to increase reliance on biofuels, both corn- and soybean-based. To

facilitate the goals under the RFS, the US created “Renewable Identification Numbers”

(RINs), which are essentially tradable certificates for producers of inputs into renewable

fuels.

A variety of structural elements in the market for RINs complicate the expansion

needed to meet the growing demand for ethanol associated with the LCFS and RFs. These

elements include the relative immaturity of the RINs market, the presence of the “blend

wall”,1 the large distances between refiners and major production basins for agricultural

products such as corn that are used to create ethanol (LaRiviere et al., 2015); and disec-

onomies induced by the competition between fuel and food uses for products such as

corn. In addition, there are concerns about the indirect carbon emissions that would arise

from the requisite conversion of land into domestic corn production in the US (Searchinger

et al., 2008).

One resolution of these difficulties would be to shift refiners’ reliance from corn

products as inputs in the ethanol production process to soybeans.2 Accordingly, to achieve

1 The blend wall refers to the point at which fuels contain 10% ethanol; it is believed that conventional
internal combustion engines cannot function normally when fuels contain more than 10% ethanol. See
Babcock (2013); Burkholder (2015); Knittel et al. (2017) and Meiselman (2016) for discussion.

2 For example, the penalty assessed by California Air Resources Board on corn produced in the US
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the ambitious goals of the LCFS, it seems highly likely that California refiners will have

to accommodate significant increases in ethanol produced from soybeans; most likely,

this will in turn require large inflows of soybeans and ethanol imported from Brazil.

Indeed, Morrison and Chen (2011) argue that Brazilian ethanol could account for 25% of

all transportation energy in California in the coming years.

An additional consideration is that the market for RINs has been shown to exhibit

significant transitory shocks or jumps, and that RINs prices follow a more complex pro-

cess than geometric Brownian motion (GBM) (Mason and Wilmot, 2016). As such, the

distribution of the log-returns of RINs prices have substantially fatter tails than does a

Normal distribution. The presence of fat tails has important implications for the incen-

tives to invest in capital projects linked to renewables (Mason and Wilmot, 2022). To the

extent that such investments are at least partially asset-specific to renewables, they reflect

a sunk (or partially sunk) up-front cost; fat tails can delay investment in the presence of

partially or fully irreversible investments (Martzoukos and Trigeorgis, 2002). This aspect

of RINs prices, combined with the significant infrastructure that will have to be deployed

to fully capitalize on the potential role of soybeans, raises questions regarding fatness of

tails in soybean price returns as well.

Our goal in this paper is to analyze price returns for Brazilian soybeans, so as to

determine the empirical importance of elements that might contribute to fat tails. To

this end, we first describe an extension of the familiar model of a stochastic process that

allows for unexpected changes, or jumps. This extension leads naturally to an econometric

specification, which can be readily combined with time-varying volatility (also known as

the generalized autoregressive conditional heteroscedasticity, or GARCH, framework).

After incorporating these elements, we characterize the likelihood function that governs

implies that ethanol produced from Brazilian crops is less carbon-intensive than is ethanol produced from
US corn. Likewise, using a life-cycle (well-to-wheel) analysis, Zhang et al. (2010) present results that suggest
Brazilian ethanol could result in 18-33% lower emissions than US based corn ethanol.
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the data generating process; this, in turn, leads directly to an estimation procedure and

hypotheses tests regarding the appropriate specification of the stochastic process. We then

apply this econometric methodology to times series for Brazilian spot prices for soybeans.

Related to this time series are ethanol prices in Brazil, as this fuel is largely dependent

upon Brazilian soybeans. Our data is based on daily observations, for both spot prices.

We compare four stochastic data-generating processes: GBM (which we refer to as PD in

the pursuant discussion), GBM allowing for a jump diffusion process (which we refer to

as JD in the pursuant discussion), GBM allowing for GARCH (which we refer to as GPD

in the pursuant discussion), and GBM allowing for both GARCH and a jump diffusion

process (which we refer to as GJD in the pursuant discussion). Our findings generally

point to the statistical importance of allowing for both GARCH and jumps, for both spot

prices.

As both GARCH and jumps will induce fat tails, our empirical results may have

important implications for motives to undertake large-scale investments such as import

facilities where these products could be offloaded, facilities that would convert soybeans

into ethanol once they have reached American shores, and refinery adaptations that are

likely to be required so as to accommodate these new fuel sources.

2. Econometric Framework

In order to develop the maximum likelihood framework used to estimate the

parameters of the different models, we begin with a brief examination of the stochastic

processes under investigation. Let Pt denote price at time t; its time path is said to follow
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a geometric Brownian motion (GBM) process with trend α and variance parameter σ if3

dPt = αPtdt+σPtdz. (1)

In equation (1), dz represents an increment of a Wiener process dz = ξt
√

dt, where ξt has

zero mean and a standard deviation equal to 1 (Dixit and Pindyck, 1993). Denote the log

returns, i.e., the natural logarithm of the ratio of price in period t to the price in period

t−1, by xt ≡ln(Pt/Pt−1). If Pt follows a GBM process then xt is normally distributed with

variance σ2 and mean µ ≡ α−σ2/2. This gives the pure diffusion (PD) model

xt = µ+σzt. (2)

The term zt in equation (2) is an identically and independently distributed (i.i.d.) random

variable with mean zero and variance one.

We introduce jumps into the model in the style of Merton (1976), by assuming

that two types of changes affect the log returns. The first type are ‘normal’ fluctuations,

represented through the geometric Brownian motion process. The second type, ‘abnormal’

shocks, are modeled through a discontinuous process. These abnormal shocks can be

thought of as occurring via the arrival of new information (Elder et al., 2013). We view

these shocks as transitory, as opposed to quasi-permanent changes in the fundamental

underlying structure of the market. This assumption makes it more natural to include a

jump process, as opposed to a regime shifting framework. We assume the discontinuities

are described by a Poisson distribution governing the number of discrete-valued events,

nt ∈ {0,1,2, ...}, that occur over the interval (t−1, t); accordingly, the probability that j jumps

3 Engel et al. (2015) use a similar approach to model soybean returns when studying how uncertainty
in alternative land-use returns influences the decision of whether or not to deforest.
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are observed during this interval equals

P
(
Nt = j

)
=

exp(−λ)λ j

j!
. (3)

A key element in equation (3) is λ, which can be interpreted as the probability of observing

a jump in any brief time interval of length dt. Thus, the arrival of jumps is a Poisson

distribution,4 from which we can describe the change in the number of jumps observed

by

dnt =

 0 with probability 1−λdt

1 with probability λdt
(4)

As in Askari and Krichene (2008), when abnormal information arrives at time t, prices

jump from Pt− (the limit as the time index tends towards t from left) to Pt = exp(Jt)Pt−;

accordingly, Jt measures the percentage change in price. The resultant stochastic process

for the random variable Pt may then be written as

dPt

Pt
= αdt+σdzt+

(
exp(Jt)−1

)
dnt, (5)

where dzt has the same properties assumed in equation (1) and dnt is the independent

Poisson process described in equation (4). Together the terms dzt and dnt make up the

instantaneous component of the unanticipated return. It is natural to assume these terms

are independent, since the first component reflects ordinary movements in price while the

4 One could of course use alternative specifications of the jump process, including Bernouilli or Levy.
Our choice is motivated by the ability to combine the Poisson process – along with a GARCH process
– into the basic PD econometric model. One advantage of our approach is that it leads to a relatively
straightforward extension of the analytics associated with evaluating optimal investment; for example,
Dixit and Pindyck (1993, p. 171) show that including a Poisson process into a conventional Brownian
motion framework adds only one (non-linear) term to the key equation that defines the optimal value
function associated with investing. Note too that we do not specify jump events ex ante, but rather let the
econometric results pick out the key parameters. An alternative would be to use some criterion to decide
when a jump has occurred, as in Chevallier and Sévi (2014).
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second component reflects unusual changes in price. The size of the jump, Yt,k, is itself a

random variable; we assume it is normally distributed with mean θ and variance δ2, and

that it is independent of the distribution for the arrival of a jump. The jump component

affecting returns between time t and time t+1 is then

Jt =

nt∑
k=0

Yt,k. (6)

Thus, the mixed jump-diffusion (JD) process for the log-price returns can be described by

xt = µ+σzt+ Jt. (7)

An alternative explanation for the “fat tails” that are often observed in commodity

price data is that Pt is subject to time-varying volatility. An example of such a phenomenon

is the “generalized autoregressive conditional heteroskedastic” (GARCH) framework.

Adapting the pure diffusion model to allow for this form of time-varying volatility gives

the GARCH – diffusion (GPD) process:5

xt = µ+
√

htzt, (8)

where the conditional variance, ht is described by the process

ht ≡ Et−1

(
σ2

)
= κ+α1

(
xt−1−µ

)2+β1ht−1. (9)

Note that when ht = σ2 the GARCH diffusion model reduces to pure diffusion model. On

the other hand, when κ > 0 and α1+β1 < 1, the unconditional variance of the volatility of

5 The process described in equations (8)–(9) is characterized by four parameters, µ,κ,α1 and β1. There
is a general consensus in the literature is that a GARCH model with a limited number of terms performs
reasonably well, and so we restrict our focus to this more parsimonious representation.
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the process exists and equals κ
1−α1−β1

.

Allowing for jump discontinuities would result in the GARCH(1,1) jump-diffusion

(GJD) process:

xt = µ+
√

htzt+ Jt, (10)

where ht is described by equation (9). Duan (1997) shows that the diffusion limit of a large

class of GARCH(1,1) models contain many diffusion processes allowing the approximation

of stochastic volatility models by the GARCH process.

We evaluate the four models using maximum likelihood estimation methods.6 To

this end, we note that the parameters of our four candidate models – PD, JD, GPD, GJD –

may be nested into the general log-likelihood function

L
(
ϕ,xt

)
= −Tλ−

T
2

ln(2π)+
T∑

t=1

ln

 ∞∑
n=0

λn

n!
1√

ht+nδ2
exp

(
−
(
xt−µ−nθ

)
2
(
ht+nδ2) ) , (11)

where n indexes the number of jumps, combined with the description of ht given in equa-

tion (9).7 In this framework, the GPD model corresponds to the parameter restriction

λ = θ = δ = 0; the JD model corresponds to the restriction α1 = β1 = 0; and the PD model

corresponds to the restriction α1 = β1 = λ = θ = δ = 0. Comparing any pair of potential

models can thus be framed as a test of an appropriate parameter restriction. For example,

the comparison of the PD and GPD models is conducted by testing the parameter restric-

tion α1 = β1 = 0; the comparison of the PD and JD models is conducted by testing the

parameter restriction λ = θ = δ = 0. The empirical validity of the parameter restriction of

interest can be evaluated by use of the likelihood ratio test (Johnston and DiNardo, 1997).

This approach compares the likelihood function under a particular restriction, L(ϕR;x),

6 Maximum likelihood estimates are known to be consistent and invariant with asymptotically normal
distributions of the parameters.

7 In the empirical results we report below, the number of jumps was truncated at 10 (Ball and Torous,
1985).
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to that of the unrestricted or less restricted likelihood function, L
(
ϕ̂;x

)
. Under the null

hypothesis that the restriction is empirically valid, the decrease in the likelihood function

associated with the restriction will be small. Such an approach can be used to make

pairwise-comparisons between a more general model and a more restricted model. The

test statistic is the log-likelihood ratio

LR = 2[L(ϕ̂;x)−L(ϕR;x)];

under the null hypothesis this statistic will be distributed as a Chi-square random variable

with m degrees of freedom, where m is the number of parameter restrictions.

3. Data and data properties

The discussion in the Introduction motivates us to evaluate soybean and ethanol

prices in Brazil; because the former might be thought of as a substitute to American corn

(as an input into ethanol production), we also evaluate US corn prices. The data for this

study consists of the daily closing prices of Brazilian soybeans and ethanol, and US corn.

Both Brazilian soybean prices and ethanol prices were obtained from The Cen-

tro de Estudos Avancadoes em Economia Aplicada (CEPEA). CEPEA Brazilian soybean

prices are reported as daily present cash value equivalents in US dollars per 60-kilogram

bag. Brazilian fuel ethanol prices are reported as daily present cash value equivalents in

US dollars per cubic meter. These prices are retrieved from the CEPEA website. Both

these prices are retrieved from the CEPEA website.8 US corn prices were obtained from

Bloomberg, and represent the front month corn futures prices based on the 5,000-bushel

contract traded on the CME.

Summary statistics, including the first four moments (mean, variance, skewness

8 The data are available at CEPEA soja and ethanol websites. We discuss the process used to construct
the Brazilian soybean and ethanol data series in greater detail in the Appendix.
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and kurtosis) for daily prices and log returns of each of the time series are given in Table 1.

The price returns are calculated as

rt = 100[ln(Pt/Pt−1)].

In Figures 1–3, we plot the price returns for the three time series. Brazilian soybean

returns are shown in Figure 1, corn returns are shown in Figure 2 and Brazilian ethanol

returns are shown in Figure 3. The soybean series displays much lower variation, relative

to the corn and ethanol series. Each series also displays evidence of asymmetry in the

distribution, as displayed by the presence of skewness. Each series also displays evidence

of leptokurtosis or “fat-tails” by the large value for kurtosis. The Anderson – Darling test,

a quadratic empirical distribution function (EDF) test, is used to examine the normality

of the data. The results of the test imply the null hypothesis of a normally distributed

random variable is strongly rejected for each of our time series.

These results are corroborated by the “quantile–quantile” plots, which we present

in Figures 4. Figure 4(a) shows the natural log of soybean returns, Figure 4(b) shows the

natural log of corn returns and Figure 4(c) shows the natural log of natural log of ethanol

returns. If soybean prices follow a geometric Brownian motion process, then the soy-

bean prices would be log-normally distributed (i.e., the natural log of the soybean returns

would be Normally distributed). A quantile–quantile plot compares the values observed

in the empirical distribution (measured on the y-axis) against the values from the inverse

of a theoretical normal distribution whose mean and standard deviation correspond to the

values associated with the empirical distribution (measured on the x-axis). If the empiri-

cal distribution of the natural log of soybean returns is close to a normal distribution, the

quantile–quantile plot will be well described by a straight line. Alternatively, if there are

significant departures from a linear relation, then the natural log of the soybean returns is

not well-described by a normal distribution, arguing against the empirical validity of the
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geometric Brownian motion specification. Here, we see consistent departures from a lin-

ear relation, particularly in the tails. These departures indicate significant leptokurtosis,

i.e., fat tails.

4. Econometric Results

The results of the maximum likelihood estimate of the four stochastic processes

(PD, JD, GPD, GJD) for each of the commodities are presented in Table 2. Incorporating a

jump component into the model (JD) noticeably reduces the instantaneous rate of variance,

σ, across all three commodities (soybeans, ethanol and corn). Such reductions are offset by

the a large and significant value of the variance of the jumps, δ. The intensity of the jump

process, λ, is significant across the three commodities. The coefficients in the soybean

markets suggest that jumps occur, on average, quite frequently, while jumps occur less

frequently in the ethanol market. Though insignificant, the mean jump size, θ, suggests

that soybeans and ethanol returns tend to experience negative jumps. This is in contrast

to the corn market, where a positive and significant θ indicates that the market tends to

experience positive shocks on average.

The GARCH(1,1) model (GPD) provides variance parameter estimates that are

significant and indicate a high degree of persistence (α̂+ β̂ is close to 1), a common feature

of financial time series. The value of β̂ suggests the effect of changes in volatility on future

volatility will persist for a longer period of time, as the rate of decay is slower. In the mixed

jump-diffusion model (GJD), the jump intensity λ remains significant though smaller in

magnitude than in the JD model. This indicates that the GJD model predicts less frequent

jumps relative to the JD model. Even so, while allowing for GARCH evidently captures

some of the estimated effect of the jump in the JD model it does not render jumps irrelevant.

Furthermore, the estimated frequency of jumps is economically meaningful: The results
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of the JD model suggest that the soybean (ethanol) price return series experiences a jump

approximately every 2.7 (5.6) days, while the GJD suggests a jump occurs approximately

every 8.1 (19.6) days.

The results of the pairwise Likelihood ratio (LR) tests are presented in Table 3. Each

entry in the Table is a test statistic of a hypothesis X vs. Y, where the null hypothesis is that

X is the appropriate stochastic process describing the data and the alternative hypothesis

is that Y is the appropriate stochastic process describing the data. The parenthetical values

below each test statistic give the associated p-value. For all three price returns, the results

displayed in column two show that allowing for time-varying volatility improves model

fit, relative to the pure-diffusion model. Likewise, the results displayed in column three

indicate that allowing for jumps yields a statistically important increase in predictive

power, relative to the pure-diffusion model, for each price return series. The results in

the final two columns indicate that allowing for both jumps and time-varying volatility

improves model performance. The results in column four indicate that incorporating

time-varying volatility into a model that allows for jumps yields a statistically important

improvement in model fit, for each commodity. Similarly, the results in column five

show that incorporating jumps into a model that allows for time-varying volatility yields

a statistically important improvement in model fit – again, for each commodity. The

take-away message is that in every case, and for each of the three commodities, the

more elaborate model is preferred to the less elaborate model. These conclusions hold

with considerable confidence: the chance that the null hypothesis (of the simpler model)

holding true is less than 1% in every case. As such, the test results point to a statistically

important gain in predictive power associated with allowing for both jumps and time-

varying volatility.

We conclude this section by providing some additional evidence on the desirability

of the GJD model, based on a pseudo-forecasting analysis. To this end, we split our sample
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in half, and re-estimated the PD and GJD models, using the first half of the sample for

each of the three commodity price returns. Then, employing the resulting point estimates,

we stochastically simulated the associated price returns, using observations from the

second half of the sample – again, for each of the three commodity price returns. We then

calculated the total prediction errors and the summed squared prediction errors for both

the PD and GJD models, for each of the three commodity price returns. The resultant

values are collected in Table 4, along with the ratio of total prediction errors (in the top

half of the table) as well as the ratio of summed squared errors (in the bottom half of the

table) for the GJD model to the PD model.

While our intent here is to offer a descriptive analysis, the results are encouraging.

For each commodity, the GJD model outperforms the PD model, in the sense that it

delivers a lower magnitude of total prediction errors as well as lower summed squared

prediction errors. The improvement in forecasting accuracy is particularly pronounced for

the soybean and ethanol series, where the GJD model dramatically lowers the magnitude

of prediction errors – by close to 89% for ethanol and close to 93% for soybeans. While

less dramatic, the GJD model also reduces summed squared prediction errors for both

commodities, by 5-10%. The improvement for the corn price returns is less dramatic:

prediction errors fall by a bit more than 17% comparing GJD to PD, but summed squared

errors are virtually unchanged. One potential explanation for the difference between these

two sets of results is that prices of the former commodities are based on markets in Brazil,

while the latter commodity is based on prices in the U.S. Perhaps the Brazilian commodity

markets are more susceptible to factors that facilitate price jumps – conceivably because

the U.S. market is thicker.
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5. The influence of jumps on investment under uncertainty

In this section, we investigate the potential impact of including jumps in the stochas-

tic specification of the price for a key commodity. To illustrate the basic ideas, we start with

a conventional investment under uncertainty problem, under which the key underlying

stochastic process is geometric Brownian motion Dixit and Pindyck (1993). In the present

application this underlying variable would be the price of a key commodity input, such

as soybeans or corn, or the price of an intermediate good such as ethanol. The invest-

ment problem involves a one-time sunk expenditure K; making this expenditure allows

the decision-maker to obtain a new payoff flow. The investment could reflect expanding

refinery capacity to process increased inflows of ethanol, or building a dedicated factory

for biofuels. A key question here regards timing: when should the investment be taken?

Answering this question requires a determination of the value associated with forestalling

the investment – the “option value of waiting” – together with a determination of the value

of investment.

We assume that the benefits associated with investing at a certain time t are pro-

portional to the price of the key resource at that time.9 This implies the benefits associated

with investing at time t can be expressed by a stochastically evolving component, which

we write as Xt. This construct could be the price of an important commodity (for example

a fossil fuel whose role will change following adoption of the policy) or the value of some

related financial instrument (for example, a carbon permit). Letting K denote the one-time

investing cost, the net benefits of acting (investing) at t are equal to10

X−K.

9 This implicitly assumes the quantity delivered is fixed, i.e. supply is perfectly inelastic. More generally,
an upward-sloping supply curve would induce quantity as a function of price. Adapting the model to allow
for such a structure is feasible, but at the cost of considerable extra complexity. See (Dixit and Pindyck, 1993,
pp. 195-199) for discussion.

10 In the pursuant discussion, we will often suppress the time subscript so as to reduce notational clutter.
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These net benefits are compared against the value associated with the option value

of waiting. Delaying investment can be beneficial, since the return from the investment

is linked to the stochastic value X. At any time, there is a chance that X will evolve

downwards, rendering the investment uneconomic; accordingly, choosing to invest at

the precise moment when anticipated net benefits first become positive is ill-advised.

By delaying, the decision-maker reduces the chance that s/he will regret making the

investment; the increase in value associated with waiting to build at the optimal time in

the future is the option value associated with waiting.

The option value is functionally related to the stochastically evolving component

through the optimal value function F(X). We start by working through the problem

when X follows a geometric Brownian motion (GBM) process. Later, we discuss the

determination of F(X) when X is also subject to the potential for jumps.11

Under GBM, one can express the stochastic evolution of X as in eq. (1). At any

moment where the decision to undertake the investment has yet to be made there are

two possible decisions: either build now or wait. The decision to build now yields the

immediate payoff X−K (as noted above). The decision to wait earns a flow payoff of zero

(since nothing has been done), while the option value, F(X), is retained; delay will deliver

anticipated change in F(X) (which can be thought of as the anticipated capital gains) less

the foregone capitalized option value (which can be thought of as the interest earned on

the net returns). If delaying is optimal, the fundamental equation of optimality requires

that these two effects balance out Dixit and Pindyck (1993), so that the optimal value

function must satisfy:

ρF(X) =
1
dt

E
[
d(F)

]
, (12)

11 One aspect of the GBM process is that changes tend to exert an effect for a considerable length
of time. An alternative approach would be to use a model in which the effect of changes in X tend to
dissipate relatively more rapidly – for example, a mean-reverting process. Analysis such a process is more
complicated, though the broad principles we describe in this section still apply Dixit and Pindyck (1993).
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where ρ is the decision maker’s discount rate and the expression on the right-hand side

is the so-called Itô operator. The left-hand side of eq. (12) measures the capitalized option

value, while the right-hand side is the anticipated capital gains. It can be shown that the

solution to this equation takes the form (Dixit and Pindyck, 1993; Mason and Wilmot,

2022):

F(X) = aXβ, (13)

where β > 1 depends positively on σ and negatively on α.

The value function F(X) can be interpreted as the value of an option to invest in

the future Dixit and Pindyck (1993). Accordingly, it is optimal to invest when this value

equals the net benefit from acting now; this implies a cutoff value X∗ for the underlying

stochastic ingredient, which is implicitly defined by the “value-matching” condition

F(X∗) = X∗−K (14)

along with the “smooth-pasting” condition

F ′(X∗) = d(X∗−K)/dX∗ = 1. (15)

Applying the value-matching and smooth-pasting conditions to the functional form in

eq. (13), it is easy to show that the cutoff value is:

X∗ =
βK
β−1

. (16)

As noted above, β is increasing in σ and decreasing in α; it follows that X∗ is also is

increasing in σ and decreasing in α.

Since investment is delayed until X rises to this cutoff value, investment will tend

to be undertaken sooner the larger is α or the smaller is σ. These features can also

15



be characterized in terms of the option value. Because a larger option value raises the

benefits from delay, it will tend to push back in time the moment at which the decision to

invest is taken. Intuitively, an increase in the variance of the stochastic process raises the

option value because of the potential for a more dramatic future increase in the underlying

value X; delaying investment allows the decision maker to strategically take advantage of

such future movements. This effect is more important the larger is the initial investment

K.

Now suppose the value X evolves according to the mixed jump-diffusion process.

Here, we assume changes in X are composed of two types of changes: ‘typical’ fluctuations,

represented through the GBM process, and ‘abnormal’ fluctuations, due to the arrival

of new information or some unusual event. We model the arrival of these abnormal

fluctuations as following a Poisson process.12 Letting nt denote the number of such events

that have occurred as of time t, the change in nt during the interval (t, t+∆t) is described

by

dnt =

 0, with probability 1−λdt

1, with probability λdt,
(17)

where λ > 0 is a parameter measuring the arrival frequency

We denote the size of a jump at time t, should one occur, is Jt. We assume the jump

size is independently and identically distributed as a lognormal random variable, so that

ln(J) is Normally distributed. As we discussed above, the resultant stochastic process for

the random variable X is given in eq. (5). It can be shown that allowing for jumps changes

the drift term in the expressions for the evolution of X to α+λθ; an important related

point is that incorporating jumps will increase the variability of X over time.13

12 Some authors model price jumps using a Lévy process, an approach that requires an ex ante definition
of a jump. For example, Benth et al. (2008) define a jump as an observation that falls outside of 2 standard
deviations from the mean. Other authors assume jumps follow a Poisson process; one advantage of this
approach is that there is no need to arbitrarily define a jump ex ante.

13 See Wilmot (2010) for discussion. An alternative explanation for the “fat tails” that are often observed
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In this setting, the solution is determined by the interaction between jump size,

Y, and continuation value, V. Unlike the GBM variant, however, this problem cannot

be solved analytically. Accordingly, we employ numerical simulations in the pursuant

discussion. To facilitate numerical simulations, we must first specify the discount rate ρ;

the mean α and standard deviation σ of the GBM formulation; and the jump intensity λ

associated with the Poisson process. In our baseline simulations, we set these parameters

as ρ = 0.02,α = 0.04,σ = 0.2, and λ = 0.10. The distribution governing Y, the magnitude of

a jump (should it occur), is assumed to be lognormal – i.e., ln(Y) is Normally distributed

– with mean θ = 0 and standard deviation δ = 1.

For a given parameterization, we solve for the critical value associated with invest-

ing; the interpretation is that when the expected value from investing meets or exceeds this

critical value, the investment will be taken. This critical value will correspond to the sum

of the investment cost itself and the option value of waiting. The difference between the

critical value and the requisite up-front investment may then be interpreted as the option

value of waiting. We also calculate the ratio of the critical value to up-front investment

cost.

Our first set of simulations investigates the role played by the jump intensity. As

we noted above an increase in λ raises the variance of the stochastic process, which should

increase the option value of waiting; delaying investment allows the decision maker to

capitalize on such future movements. In this set of simulations we vary λ between 0

and 0.2, by increments of 0.05; results from this set of simulations are summarized in

Figure 5. This figure displays the option value associated with delaying investment, for

various levels of up-front investment (i.e., K) across the possible values of λ. The first

for many energy commodity is that those prices are subject to time-varying volatility. An example of
such a phenomenon is the “generalized autoregressive conditional heteroskedastic” (GARCH) framework.
Adapting the pure diffusion model to allow for this form of time-varying volatility gives a GARCH –
diffusion process, under which the component σ in eq. (1) is replaced by a time-varying component ht, as in
eq. (9).
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feature we observe is that the option value of delaying investment rises as the amount

of money that must be invested increases. This is intuitive: because larger investments

require risking more money, the decision-maker is more cautious about undertaking the

investment. In these simulations, the tendency to delay investment tends to be more

pronounced as the probability of a jump increases: while largely insensitive to λwhen the

required investment is small, the option value of waiting does respond to increased jump

intensity at larger investment levels.14 Moreover, we note that the impact of increasing λ

is most pronounced at small value of λ. In particular, the largest effect appears to occur

when the probability of a jump occurring is increased from 0 to a positive value – i.e., when

one allows for the possibility of jumps. Indeed, this effect become ever-more important

as the up-front cost is increased.

In the second set of simulations, we vary θ – the expected value of the (natural log

of) jump size – allowing for values ranging from -0.2 to 0.2, by increments of 0.1 (leaving

other parameter values as in the preceding simulation). In this way we consider cases

where abrupt movements in prices are negative on average as well as cases where jumps

are positive on average. The results from this simulation are presented in Figure 6. As in

the first set of simulations, we note that option value of delaying the investment rises as

the amount of money that must be invested increases. As we noted above, an increase in θ

will raise the drift in the stochastic process. This induces conflicting effects on the option

value of waiting: on the one hand, larger drift depresses the option value of waiting;

on the other, larger values of θ raise the variance of X, and larger variance increases the

option value of waiting. In the simulations we report here the former effect appears to be

somewhat larger, though the net effect is small. Evidently, the average jump value exerts

a less significant influence on the value of delaying investment than does the potential for

14 One should not make too much of the seeming equivalence of option values at the smallest level of
K: The numerical grid we employ in the solution algorithm is not sufficiently granular to detect differences
between option values at small levels of K.
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a jump in the first instance.

The third set of simulations we consider varies δ, the standard deviation of the

jump size; here we consider values ranging from 0.5 to 1.5, by increments of 0.25. Results

from these simulations are presented in Figure 7. As we noted above, raising the variance

of the jump size pushes up the variance of the stochastic variable X, which induces an

increase in the option value of waiting. Interestingly, while this effect is small when δ < 1,

it becomes more pronounced when δ > 1. That is, while the option value of waiting is not

particularly responsive to changes in the variance of jump size at smaller levels of that

variance, the impact upon option value becomes significantly more pronounced when the

variance of the jump size increases above unity. Indeed, variations in the potential size of

the jump play an ever-larger role as the amount of money that must be invested increases.

Again, this seems intuitive: when prices are subject to possible jumps with particularly

large variation, the impact on the value of waiting increases to an ever-larger degree –

generating an increasing motive to delay. That is, greater variation in jump sizes make

waiting more attractive, and hence raise the option value at the optimal investment time.

6. Conclusion

Our goal in this paper is to re-examine the assumption that the relative price returns

of key energy prices, such as those for commodities related to biofuels, can be modeled

using a continuous time process. In particular, a key goal was the development of a

more accurate understanding of the stochastic forces driving these spot prices. We draw

several important conclusions from our analysis. For all three prices under consideration

– soybeans, corn and ethanol – the data strongly suggest that allowing for jumps or

time-varying volatility in natural gas price returns generates improved fit, relative to

the pure diffusion model. Moreover, combining a process that allows for jumps with a

GARCH process (GJD) outperforms all alternative stochastic processes. Thus, our results
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indicate that incorporating both time-varying volatility and jumps into empirical models

of these spot prices improves predictive power; the sharper predictions that result from

this improvement should be of clear benefit to market traders.

There are many reasons why a better understanding of the stochastic process driv-

ing soybean and ethanol prices would be useful. These energy resources can have im-

portant microeconomic effects, with commodity price risk having a potentially significant

impact on profits in a variety of lines of business. Knowledge of the underlying stochastic

behavior of these assets could aid in forecasting spot prices, with attendant reductions in

risk exposure. Moreover, decisions to invest in important infrastructure can be improved

by an enhanced understanding of the stochastic processes driving the prices of related

resource (Mason and Wilmot, 2022). For example, the accuracy of a decision to signifi-

cantly expand the for a refinery to handle ethanol infrastructure, or to process imported

soybeans, will almost surely be improved by such enhanced understanding.15 This is par-

ticularly true when the prices of imported soybeans or ethanol are subject to infrequent

jumps, as our results indicate. For in this case, the underlying distribution of oil prices

is “fat-tailed” or leptokurtotic, and fat tails can be particularly important if prices exert a

non-linear marginal impact on the agent’s profit flow (Weitzman, 2009).

The potential for jumps in soybean and ethanol prices is of more than academic

interest, as jumps in these prices have implications for investment in biofuel capacity

and in the requisite infrastructure needed to accommodate a meaningful increase in the

use of vehicles than can capitalize on expanded ethanol supplies (i.e., E85 vehicles).16 To

15 This observation is independent of any qualitative assessment of the social desirability of using
soybean as as feedstock for the production of biofuels. Fargione et al. (2008) argue that Brazilian soybean
based ethanol is not socially desirable if its production is facilitated by clearing Amazonian rainforest.
The case for Brazilian ethanol is far more compelling if its production is facilitated by converting Cerrado
(grasslands).

16 Babcock (2013) argues that more stringent future RFS standards will require new investment in
E85 infrastructure, and “[w]hen the [RFS] mandate is set at a level that is not easily met with existing
infrastructure, then the incentive to invest in infrastructure is large.” As we noted, this incentive is reduced
when there is value to waiting to build, as when RINs prices are influenced by the presence of jumps.
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the extent that there are jumps in these prices, biofuels producers with excess capacity

might be able to cash in on unexpectedly high price returns. But as our simulation results

showed, it is also true that jumps in the underlying commodity price induce an option

value associated with delaying investment in increased capacity (Mason and Wilmot,

2016). Similarly, the presence of jumps implies an option value to waiting to add E85

fueling stations.

Other benefits accrue from the ability to better frame the underlying stochastic

model in an investment under uncertainty framework, which we believe has real po-

tential for evaluating important large-scale infrastructure investments such as refinery

expansions or import/export terminals. Because such enhancements to transportation

infrastructure may have far-reaching benefits, for example by facilitating gas movements

to regions with larger demand, the welfare consequences of these investments may be

substantial. The potential for substantial welfare implications of these investments un-

derscores the importance of developing a better understanding of the stochastic process

underlying biofuels prices, which in turn highlights the value of developing a more accu-

rate empirical model to describe these prices.
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7. Appendix: Details on Brazilian Data Processes

In this Appendix, we provide additional detail on the Brazilian soybean and ethanol

data.17 Brazilian soybean prices are related only to soy delivered in Parana port, either

Delivered at Place (DAP), or in silos or other delivery mechanisms which are accessible

to ships’ loading apparatus, known as Free at Shipside (FAS) delivery. All prices are

converted to present values; specifically, futures contracts are converted to cash value

based on the time in days between negotiation and payment. This is not related to the

delivery term of futures contracts. CEPEA uses a conversion between Brazilian reals and

US dollars based on the commercial market USD sale price as of 4:30 pm.

To build this data series, CEPEA contacted all possible industry members regardless

of sophistication and size, ranging from soy producers to trading firms and brokers and

soy consumers such as chicken and hog farmers. These organizations were each reviewed

for their capacity to participate in the data provision in a reliable way, as well as with

an eye toward selecting a representative sample of participants to capture a full picture

of regional soy prices. Contributors are only retained if they participated regularly in

meetings with CEPEA and if provided data regularly during those meetings.

Daily data is collected at random from qualifying contributors throughout the day

from 0900-1700, to be aggregated and published by 1800. Once all data points are collected,

which include unmet offers of sale and purchase, those offers which are outside the daily

range of transacted prices are excluded. A simple mean of the remaining data points

constitutes the initial average. Then, data points outside of the range of two standard

deviations are excluded, and a new average calculated. Subsequently, the coefficient of

variation is compared to a critical value (CV), defined as 25% above the average of the past

20 days’ coefficients of variation. If the current day’s CV is above this, the current day’s

17 An explanation of the methodology associated with the construction of this data is avail-
able in the file “Metodologia” (accessible at http://www.cepea.esalq.usp.br/br/metodologia/
metodologia-da-soja-esalq-bm-fbovespa-paranagua.aspx.
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average price is compared to the prior day’s published price indicator, potentially resulting

in exclusion of additional data (this process consists of removing the most “extreme” data

points successively until the above critical value comparison is passed).

Since 5 April, 2015, any day with five or fewer qualifying data points, the prior

day’s published price indicator is added as a single data point and the above procedure is

followed as usual. When there are two or fewer qualifying data points, all offers and bids

are added in regardless of whether they are outside the range of transacted prices on that

day. The remaining analysis on these dates follows the above process. We use data from

March 2006 to April 2017; in total, there are 2,765 observations.

Brazilian ethanol prices are reported as daily present cash value equivalents in US

dollars per cubic meter.18 Prices are related only to fuel ethanol delivered in Paulı́nia or

sent to other destinations such as Guarulhos, Barueri, Santo Andre, Sao Caetano do Sul,

Sao Jose dos Campos, Cubatao, Ipiranga and Sao Paulo. The final prices are calculated

taking the deliveries costs to Paulı́nia into account (i.e., final price is the sum of ethanol

price plus estimated freight between the mills and Paulı́nia).

18 A discussion of the methodology used to construct this time series is available at https://www.
cepea.esalq.usp.br/en/methodology/methodology-12.aspx.
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Figure 1: Soybean returns

Figure 2: Corn returns

Figure 3: Ethanol returns
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(a) (b) (c)

Figure 4: Quantile-quantile plots for soybeans (panel a), corn (panel b) and ethanol (panel c) price returns.

Figure 5: The impact of jump probability upon the option value of waiting.
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Figure 6: The impact of jump mean upon the option value of waiting.
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Figure 7: The impact of jump variance upon the option value of waiting.
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Table 1: Summary statistics
Soybean Corn Ethanol

Prices Returns Prices Returns Prices Returns
Start 7/29/97 7/30/97 12/10/96 12/11/96 01/25/2010 1/26/10
End 1/6/17 1/6/17 2/27/17 2/27/17 2/17/17 2/17/17

Mean 18.98 0.006 356.2 0.006 541.1 -0.01
Variance 59.54 1.805 25809 3.280 15873 1.91
Std Dev 7.716 1.344 160.7 1.811 126.0 1.38
Coeff. of Variation 40.7 24190 45.1 30582 23.3 -10387
Skewness 0.5253 -0.1767 1.0988 -0.5394 0.6915 -0.0655
Kurtosis -0.7700 3.932 0.2150 11.86 0.5409 4.039
Anderson – Darling
Normality test 129.9* 31.30* 248.2* 36.66* 14.10* 10.21*
N 4842 4841 5091 5090 1753 1750

*: statistically significant at better than .01 level
Soybean returns measured by CEPEA / ESALQ Soybean Price Index
Corn returns measured by Corn Futures Price - Front Month Contracts
Ethanol returns measured by CEPEA/ESALQ hydrous ethanol Index
Kurtosis is measured as “excess” kurtosis, so that normal distributed variables should have
values close to 0.
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Table 2: Estimation of the Model Parameters for Daily price returns

µ σ κ α1 β1 λ θ δ

A. Soybeans
PD 0.0056 1.34***

(0.016) (0.014)

JD 0.0448* 0.883*** 0.376*** -0.105 1.63***
(0.025) (0.047) (0.091) (0.069) (0.145)

GPD 0.0202 0.0487*** 0.0939*** 0.880***
(0.017) (0.008) (0.009) (0.011)

GJD 0.0241 0.0137*** 0.0792*** 0.891*** 0.124*** -0.178 1.69***
(0.017) (0.004) (0.008) (0.011) (0.024) (0.118) (0.143)

B. Corn
PD 0.0067 1.82***

(0.012) (0.018)

JD -0.0482* 1.16*** 0.382*** 0.144* 2.21***
(0.025) (0.040) (0.057) (0.076) (0.131)

GPD -0.0007 0.0552*** 0.0622*** 0.925***
(0.023) (0.014) (0.011) (0.013)

GJD -0.0321 0.0239*** 0.0496*** 0.922*** 0.103*** 0.266 2.86***
(0.022) (0.007) (0.006) (0.010) (0.022) (0.187) (0.248)

C. Ethanol
PD -0.0133 1.38***

(0.029) (0.023)

JD -0.0082 1.03*** 0.177*** -0.0289 2.17***
(0.046) (0.048) (0.061) (0.092) (0.297)

GPD 0.0406 0.0482*** 0.117*** 0.862***
(0.029) (0.015) (0.019) (0.021)

GJD 0.0004 0.0604** 0.124*** 0.819*** 0.0510** 0.626 2.28***
(0.029) (0.026) (0.027) (0.041) (0.026) (0.426) (0.459)

Standard errors in parentheses. Asterisks signify statistical significance: *: better than 10% level;
**: better than 5% level; ***: better than 1% level.
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Table 3: Likelihood ratio test statistics

PD vs. JD PD vs. GPD JD vs. GJD GPD vs. GJD

Soybean Spot Returns 539.4 870.2 547.5 216.7
(0.000) (0.000) (0.000) (0.000)

Corn Futures Returns 644.4 538.9 414.8 520.4
(0.000) (0.000) (0.000) (0.000)

Ethanol Returns 197.6 315.9 60.3 178.6
(0.000) (0.000) (0.000) (0.000)

p-values presented (in parentheses) below test statistics.

Table 4: Forecasting results: PD vs. GJD

Summed prediction error

Soybeans [2,420] Ethanol [875] Corn [2,544]

PD -113.40 -75.72 129.2
GJD -8.143 8.447 106.740
|GJD/PD| 0.0718 0.1116 0.8260

Summed squared prediction error

Soybeans [2,420] Ethanol [875] Corn [2,544]

PD 8674.7 3601.2 17007.0
GJD 8246.2 3282.2 17005.6
|GJD/PD| 0.9506 0.9114 0.9999

Sample represents second half of full sample; parameter estimates used to
form predictions are based on first half of sample. Values in square brackets
are number of observations used for each half.
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