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Abstract
In this study, we investigate the influence of climate policy uncertainty

(CPU) on energy (crude oil, heating oil and gas) and metal (gold, silver,
copper and platinum) commodity futures markets, using data from 2000 to
2020. we employ a quantile regression approach, which allows for a more
complete analysis of various conditions in the commodity markets (i.e. bear-
ish, normal, and bullish markets). Our results reveals that the impact of
CPU shocks on commodity futures are market condition specific. CPU
exerts significantly negative effect on all commodities, except natural gas,
under low quantiles. Under the normal market, the impact of CPU on en-
ergy returns varies across commodities and is only significant for heating
oil and platinum. When the market is bullish, the impact of CPU on com-
modity returns is heterogeneous and insignificant. Natural gas is discovered
to be a good hedge tool for climate policy risk. Drawing on commodity
futures pricing theories, we also examine the mediating effect of inventory
and hedging pressure between the relationship of CPU and commodity price.
We find some evidence of inventory as the channel through which CPU af-
fects commodity returns for copper. These findings can be meaningful to
policymakers and investors.
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1 Introduction

Commodity market stability is a critical determinant for economic development

and growth (Kang and Kwon (2020); Ge and Tang (2020)). Given its strategic

role as both an investment asset and for food security, commodity markets are

largely influenced by and often reflect the macroeconomic conditions as they serve

as diversifies and safe-haven instruments (Gong and Xu (2022)). Over the past

decades, financialization of commodities has led to a proliferation in the num-

ber of studies investigating interconnectedness, and cross-sectoral co-movement

in commodity market with other economic variables. It is clear in the literature

that commodity assets are more integrated and could act as either transmitters

or receivers of shocks from the economy (Prokopczuk et al. (2021), Diebold et al.

(2017)). Taking the on-going Russia-Ukraine war for example, it is obvious to see

the impact on commodity prices which is reflective of the broader global macroe-

conomic sentiments and conditions (i.e., supply chain disruptions, effect of trade

sanctions, geopolitical divide, and tensions, etc.). Thus, understanding the deter-

minants of commodity futures fluctuations is critical for timely macro-prudential

policy planning and to attenuate the possibility of market systemic risk. Indeed,

commodity prices respond heterogeneously to different economic cycles depending

on the macroeconomic fundamentals including, governments or producer supply

policies, aggregate demand shocks, global uncertainties as well as investor senti-

ments (Cabrera and Schulz (2016); Gong and Lin (2021); Kang et al. (2017b)).

Globally, sluggish growth recovery, skyrocketing inflation and food prices, ongoing

Russia-Ukraine conflicts (with its concomitant impact on commodity and energy

prices) and the existential threat of climate change constitute major challenges for

all economies. These challenges continue to create enormous uncertainties, volatil-

ities and ambiguities among market participants. As noted by Su et al. (2019),

an unanticipated uncertainty often creates market disruptions and induces govern-

ments to make abrupt adjustments in their policies with deeper implications on

volatility and investor sentiments. Indeed, recent studies has shown that textual-

based measures of uncertainties including geopolitical risk and economic policy

uncertainty can influence asset prices and commodity prices is no exception (see,

Demirer et al. (2018); Alqahtani and Klein (2021),Bouri et al. (2022)). While
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commodity futures is regarded as common investment vehicle for portfolio risk

diversification from hedging/speculation perspective, commodity prices are also

strongly influenced by economic, financial, geopolitical events and abrupt policy

changes (see Kang et al. (2017b)). Therefore, in this paper, we seek to examine

how climate policy uncertainties affect commodities markets and in particular, we

aim to shed light on the dynamic linkage between climate policy uncertainty and

commodity futures prices under various market conditions.

Climate policy uncertainty broadly relates to the uncertainty regarding cli-

mate risks, emissions, global warming/climate change, regulations related to de-

carbonization, renewable energy economy, etc, which are likely to cause major

policy changes to government’s commitments, and actions towards transition to

low-carbon economy. Climate policy uncertainty focuses on issues regarding car-

bon risk as well as how to reduce carbon emissions. Given that conventional

energy-related commodities and industrial manufacturing process are carbon in-

tensive, it is critical to ascertain the pricing implication of climate policy uncer-

tainties/carbon risk on commodities market. Indeed, most commodities are either

direct or indirect inputs (raw materials) in the final production process and thus

are influenced by global market demand and supply factors. In addition, majority

of commodity contracts are traded in the futures market, which means that cli-

mate risk or uncertainties relating to supply and demand could impact commodity

futures. For example, the “phasing-out and phasing-down” policy conundrum over

fossil fuels/energies (UNF (a), UNF (b), p. 4; Saha and Carter (2022)) presents

both a demand and supply side pressure from climate policy uncertainty on the

commodity markets. On the demand side for instance, increase climate policy

uncertainty by governments to curtail consumption of some commodities (e.g.,

crude energy or dairy products) could cause commodity producers to reduce their

inventories level by increasing current supply to both futures and the spot mar-

kets. This excess supply can lead to decline in commodity prices. In addition,

according to so-called Working Curve theory, lower inventories level could increase

the convenience yields which then increases future stockout or commodity scarcity

(Routledge et al. (2000); Carter and Giha (2007); Alquist et al. (2014)). On

the supply side, climate policy uncertainties (and climate physical risks) could

lead to disruption in the production or extraction process of commodities thereby

2



prompting precautionary hoarding of inventories by producers against any future

disruptions in production. For example, Muñoz (2021) note a greater sensitivity in

carbon-intensive fossil fuels and metals commodities following the announcement

of the US withdrawal from the Paris Agreement and Trump’s loosened environ-

mental regulations. The interruptions could reduce supply in the physical market

causing an increase in the spot prices of commodities while decreasing risk pre-

miums in the futures markets. As precautionary inventories or stock hoarding

increases, convenience yield will also be reduced.

In the literature, the focus has been on economic policy uncertainty (EPU)

with several studies investigating its linkage with commodity markets (Wang et al.

(2015); Reboredo and Wen (2015); Yin and Han (2014); Shahzad et al. (2017);

Handley and Limão (2017); Huang et al. (2021a); Lyu et al. (2021); Naeem et al.

(2021); Bahloul et al. (2018); Fang et al. (2018); Zhu et al. (2020); Yang and

Hamori (2021); Mokni et al. (2020); Ren et al. (2022)). The consensus from the

majority of these studies is that EPU has substantial and heterogeneous effect on

commodities returns depending on the market conditions. On the contrary, some

studies also reveal that no co-movement and Granger causality exist between com-

modity prices and policy uncertainty (see Reboredo and Uddin (2016)). However,

our paper diverges from the extant literature by focusing on climate policy uncer-

tainty and its interaction with the commodities futures market. To the best of our

knowledge, there is little evidence in the literature regarding how climate policy

uncertainties affect commodities market apart from Nam (2021) and Makkonen

et al. (2021) which investigate extreme weather and commodities nexus. For ex-

ample, Nam (2021) noted that climate uncertainty (proxied by El Nino weather

shocks) induces a negative supply shock which can generate inflationary pressure

on commodities prices (in particular agricultural, energy and non-energy com-

modities).

Indeed, climate change risk are often decomposed into two main components:

1) Physical risks (risks arising from climate and weather-related events, for exam-

ple, droughts, floods, heat waves etc.), and 2) Climate transition risks (resulting

from the process of adjustment towards a lower-carbon economy). Our study fo-

cuses on the later which is transitional risk using the newly constructed climate

policy uncertainty (CPU) index by Gavriilidis (2021). Analogues to Engle et al.
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(2020), climate risks can significantly impact firm’s investment decision and the

CPU index presents an additional tool for capturing climate-related policy uncer-

tainty at the macroeconomic level (Gavriilidis (2021)). As recently observed by

Erten and Ocampo (2021), one of the three main factors that could potentially

affect global commodity prices is the major changes that are required to occur

in the global energy economy to mitigate climate change which involves decar-

bonization of production processes and additional demand for metals and cleaner

energy materials (copper, cobalt, nickel, etc) associated with growing renewable

energy production. Thus, in this paper we extend the literature by investigating

the importance of CPU in the pricing mechanisms of commodity futures which fills

the literature gap on the macroeconomic channels of climate policy uncertainties

impact. To achieve our research aim, we address the following research questions:

1. Do CPU shocks influence commodity futures returns? 2. Does the impact differ

across market conditions and by commodities sectors/classifications? 3. What are

the channels by which CPU influence different commodity classes?

1.1 Theoretical linkage between CPU and commodities futures

Hypothetically, we conjecture the following mechanisms by which CPU can influ-

ence commodity futures markets. First is the direct/indirect impact via funda-

mental demand and supply channels: For example, when a major economy (US

as case in point) pull out of a binding climate policy, it may send a mixed sig-

nal to the global market that climate friendly or clean energy products are not

a priority and thus business can “continue as usual”. This could lead to a po-

tential increase in the demand for more [conventional] carbon-intensive products

as a precautionary measure against future interruptions from policy change. As

precautionary demand increases (decreases) due to climate policy uncertainty sig-

nal, prices of commodities will be pulled-along thereby distorting futures contracts

(see Ren et al. (2019)). If the uncertainty decreases (increase) the supply from the

producer-side may increase (decrease). For example, Kang et al. (2017a) observed

that government’s supply policies often affected energy and agriculture commodi-

ties as they constitute strategic materials in most economies.

In addition, climate policy uncertainty can induce shocks to macroeconomic
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fundamentals and hence the business cycle-including investment, and production

activity which can spillover to commodities market. Following from the same argu-

ment by Bloom (2009), macroeconomic uncertainty shocks are anticipated to have

a swift drop-bounce-overshoot trajectory on output, employment and productivity

as firms defer their short-term investment and hiring decisions. Thus, uncertainty

shocks (including CPU) could pose similar impact on commodity futures market as

they can largely be seen as aggregate demand shocks (Cabrera and Schulz (2016);

Leduc and Liu (2016); Nam (2021)).

Second relates to the flight to (from) safety mechanism: Climate policy uncer-

tainty can also distort market dynamics in terms of investment into cleaner tech-

nologies and divestment from fossil fuels. Investors (speculators) expect a guaran-

teed streams of cashflows or ROI on their investments in renewable or sustainable

climate products. However, when policies around climate change initiatives are

uncertain, investors adopt the “let’s wait and see attitude” and instead may divert

their investable funds which can push up prices of other commodities due to the

mechanism of “flight to (from) safety” or safe haven mentality (see, Arouri et al.

(2016) and Liu and Zhang (2015)). For example, Nerger et al. (2021) documents

the energy industry (in particular coal) benefited when Trump loosened environ-

mental regulations and climate policies to strengthen the US economy. Moreover,

Nam (2021) also demonstrates that, in order to hedge against climate uncertainty

investors may reallocate their commodity portfolio via buying more gold in times

of climate uncertainty as gold is often regarded a safe-haven asset, and thereby

pushing up gold (precious metal) prices in the market.

Third, the financialization of commodity markets means that there is a strong

linkage between commodities, in particular gold and crude oil (which are often

used as diversifiers) with the global financial/equity markets. Thus, policy uncer-

tainties can potentially affect global capital flow and credit expansion which can

depress investment appetite as well as the stock markets. This can spillover to

the commodities due to the interconnectedness of strategic commodities in partic-

ular gold/precious metals and crude oil to the global financial market. (Tang and

Xiong (2012); Huang et al. (2021b); Tang et al. (2021)).

Theoretically, our paper fits into the two main pillars of commodity futures

pricing literature which are the theory of storage (ToS) and the hedging pressure
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hypothesis (HPH). According to ToS, inventory levels or slope of the futures curve

are the main drivers or determinants of commodity futures prices. However, one

needs to ascertain the factors responsible for the inventory levels. While some of

these factors may be obvious (such as the conventional supply-side or demand-side

determinants), others may be less direct. For example, when climate related tran-

sitional policies become uncertain, it creates “precautionary fear” or panic among

market participants (as explained in our first mechanism). In response to these

fears, market participants may decide to increase or decrease their storage of the

commodities that are likely to be affected by the policy uncertainty. As a result,

inventory levels or slope of the futures curve will change and thereby reflect in the

commodity futures prices. The second pillar, which focuses on hedging pressure,

argues hedgers’ net position as the principal determinant of commodity futures

prices. Nevertheless, the net position of a hedger is predominantly determined by

both market and economic conditions (apart from the hedgers’ own risk prefer-

ences) among other factors. Climate policy uncertainty constitute part of both

market (in situation where the policy is commodity specific - for example, un-

certainty about ‘phasing out’ and ‘phasing down’ crude oil production or cutting

down on diary product consumption) and economic conditions which can impact on

the hedging dynamics of market participants. In particular, with climate-sensitive

commodities class (such as energy, precious metals) it is plausible that climate pol-

icy uncertainties would put pressure on investment activities and thereby affect the

hedging decisions of market participants. For example, in the presence of climate

policy uncertainty regarding potential ban on crude oil fracking (in the US) or ban

on certain agricultural commodities, producers may increase their short hedges

and consumers decrease their long hedges compared to the hedging strategy that

they could adopt if otherwise. Empirically, our paper conducted channel analysis

on both hedging pressure and inventory level to ascertain the pricing mechanism

of climate policy uncertainty on commodity futures market.

This paper makes a significant contribution to literature in four ways. To be-

gin with and to the best of our knowledge, this paper is the first to shed light

on the linkage between commodity futures market and CPU index. With the

ever-increasing polarization and geo-politicking of climate policy issues, it is crit-

ical to understand how ambiguous or opaque climate actions (which create these
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uncertainties) could impact the broader economic fundamentals such as commod-

ity prices. Secondly, a unique feature in our paper is that we account for het-

erogeneities in commodity market conditions on the premise that bullish market

conditions may cause commodity futures to respond differently to CPU shocks

compared to bearish markets for example. Thus, by employing quantile regression

techniques we are able to specifically ascertain whether commodity futures reaction

to CPU shocks are heterogeneous depending on market conditions-bearish, normal

and bullish. In addition, by utilizing the QR approach we analyze the nonlinear

impact of CPU on commodity futures under different market regimes with con-

sistent and robust estimates (accounting for any heteroskedasticity and skewness

in our dependent variables). Thirdly, according to Gospodinov and Jamali (2018)

and Zhu et al. (2020), commodity sectors are composed of highly dissimilar as-

set classes and thus, the determinants of price fluctuations may be heterogeneous

across different sector categories. Thus, we contribute to the literature by shedding

empirical insights on the response of both individual and sector-level commodities

to CPU shocks. Fourthly, this study also contributes to the literature by providing

a channel analysis which sheds new and novel insights on the pricing mechanism of

climate policy uncertainty into commodity futures market. The channels of CPU

transmission analysis are imperative for investment decisions and for portfolio in-

vestors’ trading strategies. To the best of our knowledge, our study is the first

to offer empirical evidence on the transmission channels of CPU into commodity

markets.

Previewing our results, we find that in general, the impact of CPU shocks on

commodity futures are sector and market condition specific. In particular, CPU

has significantly negative effects on all commodities, except natural gas, under

low quantiles. Whereas in the normal market, the impact of CPU on energy re-

turns vary across commodities and is only significant for heating oil and platinum.

However, under the bullish market, the impact of CPU on commodity returns is

heterogeneous and insignificant with natural gas identified as a good hedging in-

strument for climate policy risk. In addition, our channel analysis which draws on

futures pricing theories, reveals some evidence of inventory as the channel through

which CPU affects commodity returns. This finding has significant implication

for regulators, asset managers and market participants with regards to commodity
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pricing strategies under climate risks as we transition to a low-carbon economy.

The remainder of the paper is structured as follows. Section 2 provides the data

and empirical method whereas Section 3 presents the results and discussions. Sum-

mary and conclusion are covered in Section 4.

2 Data and empirical method

2.1 Data and sample

Our investigation is conducted with respect to seven commodity futures contracts

from January 2000 to February 2020. The interval was chosen because the CPU

index developed by Gavriilidis (2021) are available from January 2020 and COVID-

19 broke out in early 2020. Using the scaled frequency of articles in eight major

U.S. newspapers, CPU index measures the uncertainty related to climate policy at

monthly frequency.1 To match the data of CPU index (totalling 241 observations),

all other variables are collected and/or constructed at the end of each month. The

difference of CPU index is used in this study to measure the CPU index shocks.

The contracts included in this study include three energy commodities (crude

oil, heating oil and natural gas) and four metals (copper, platinum, gold and silver)

that are heavily traded on the New York Mercantile Exchange (NYMEX). Data on

commodity futures contracts, including prices, are obtained from the Commodity

Research Bureau (CRB) dataset. For each commodity, we obtain several futures

contracts with different time-to-maturities. We construct continuous time series,

similar to the practice of Fernandez-Perez et al. (2018), by rolling from the closest-

to-maturity contract to the second-nearest contract when the front-end contract

is less than one month before maturity.

The first channel variable in our study is inventory. For all three energy com-

modities, the weekly (Friday) inventory data can directly be downloaded from the

Energy Information Administration (EIA) web page. Four metals (copper, plat-

inum, gold and silver) traded on Comex and NYMEX have records of warehouse

1CPU index can be found from the website: https://www.policyuncertainty.com/climate unc-
ertainty.html. This index is related to the climate change news index constructed by Engle et al.
(2020), which applies textual analysis on articles from the Wall Street Journal. All news related to
climate change (e.g. natural disasters) in one newspaper are included in their index construction.
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stock data at daily basis and we obtain the data from Bloomberg. The detailed

proxies for each commodity inventory levels are listed in the Panel A of Table

1 together with other commodity basic information, including CRB tickers and

exchanges.

Positions data in the Commitment of Trader (COT) report are by the Commod-

ity Futures Trading Commission (CFTC) every Tuesday and are released to the

public the following Friday. The COT reports detail the aggregate long and short

positions of various types of participants in commodity futures markets, including

commercials and, noncommercials, and nonreportables.2

We also use aggregate controls to account for sources of risk premium that is

not related to CPU. The control variables included in this study are change in

short-term Treasury-bill yields (3 Month Treasury-bill yields), change in default

premium (Baa - Aaa rated corporate bond yields), S&P 500 Index, the implied

volatility of the S&P 500 index (VIX index), change in the term spread (the spread

between the US 10 year Treasury-bond yield and the U.S. 2 year Treasury-note

yield), change in Baltic dry index, and change in the US News based Economic

policy uncertainty index (EPU)3 (following earlier literature for example, Acharya

et al. (2013), Bakshi et al. (2010), Bosch and Smimou (2022) and Bessembinder

(1992)). Control variables are also obtained from Bloomberg. Data sources of

these variables can be found in the Panel B of Table 1.

2.2 Variables and summary statistics

We compute the excess return for commodity i in month t using the front month

continuous price time series,4

Ri,t =
Fi(t, T )− Fi(t− 1, T )

Fi(t− 1, T )
, (1)

2All of a trader’s reported futures positions in a commodity are classified as commercial if
the trader uses futures contracts in that particular commodity for hedging as defined in CFTC
Regulation 1.3(z).

3These data are available at http://www.policyuncertainty.com
4Its rolling method is stated in Subsection 2.1 to ensure our contract selection strategy gen-

erally takes the most liquid portion of the futures curve.
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Table 1: Data sources

This tables includes the basic data information of the commodity futures contracts and macroeconomic variables used in this
study over the sample period between January 2000 and February 2020. Each of the data series studied are at monthly
frequency, yielding 241 observations. Panel A lists the details of the three energy and four metal commodity futures, showing
the exchange in which they are traded, the CRB ticker and their inventory sources. EIA refers to the U.S. Energy Information
Agency. Panel B reports the sources of CPU and macroeconomic control variables.

Panel A: Commodity futures contracts

Commodity name CRB
ticker

Inventory source and proxies

Crude oil, WTI CL EIA U.S. ending stocks excluding Strategic Petroleum Reserve
Heating oil, ULSD NY Harbor HO EIA U.S. ending stocks of distillate fuel oil
Natural gas, Henry Hub NG EIA U.S. Working natural gas total estimated Storage
Copper, High Grade/Scrap No. 2
Wire HG Bloomberg LME warehouse stocks (LSCA Index)
Gold GC Bloomberg COMEX warehouse stocks (COMXGOLD Index)
Silver 5,000 Troy Oz. SI Bloomberg COMEX warehouse stocks (COMXSILV Index)
Platinum PL Bloomberg NYMEX warehouse stocks (NYMXPLAT Index)

Panel B: Macroeconomic Variables

Variables Abbr. Data sources

Climate policy uncertainty index CPU Economic policy uncertainty webpage
Baltic dry index BDY Bloomberg (BDIY Index)
3 Month Treasury Bill yield TB Bloomberg (GB3 Govt)
Default spread DFS Bloomberg (MOODCBAA - MOODCAAA)
VIX index VIX Bloomberg (VIX Index)
S&P 500 index SP Bloomberg (SPX Index)
Term spread TS Bloomberg (USYC2Y10 Index)
Economic policy uncertainty index EPU Economic policy uncertainty webpage
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where Fi(t, T ) is the futures price at the end of month t for a futures contract

maturing on date T .

Regarding the inventory data, we follow Gorton et al. (2013) and Acharya

et al. (2013), and remove the deterministic trend by taking the ratio of the log ob-

served inventory level to the Hodrick-Prescott filtered level with the recommended

smoothing parameter of 1600 ∗ (12/4)4 for the monthly data as recommended by

Ravn and Uhlig (2002). To control for seasonality in inventories, we regress the

de-trended inventory against monthly dummy variables and employ the residuals

of this regression if the F -test is significant at the 1% level. The p-values and these

F -statistics are reported in Table 1. Energy commodities potentially have strong

seasonality in the inventory series which can be explained by demand cycles.

As for the second channel variable hedging pressure, we follow the convention

in the literature, and consider commercial traders as hedgers and non-commercial

traders as speculators. We compute the hedging pressure (HP ) as follows:

HPi,t =
Commercial Total Shorti,t − Commercial Total Longi,t

Open Interesti,t
(2)

Thus a positive (negative) value means an overall short (long) position of hedgers.

The occurrence of net short positions over the sample period (number of net short

position divided by the total number of observations) is reported in Table 1 column

‘HP +%’. We can observe some heterogeneity of net commercial trader positions

across commodities. Gold (34.3%) is the only commodity where net long positions

occur most of the time. All other markets exhibit net short positions more often

than net long positions, where platinum, silver and heating oil have net short

commercial positions most of the time (98.9%, 95.9% and 94.2%).

Table 2 reports the descriptive statistics of commodity excess returns and

macroeconomic variables. From Panel A, we can observe that the average monthly

excess returns are positive for all commodities. The return of gold has the lowest

dispersion while natural gas shows the highest standard deviation. All the return

series are asymmetric and fat tailed as indicated by the skewness and kurtosis

values. The Jarque-Bera normality test also indicates that the excess returns se-

ries are not normally distributed. Also, the unit root (the augmented Dickey and

Fuller (1979)) test suggests that all the excess return series are stationary at the
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Table 2: Descriptive statistics of futures contracts, inventory, hedging position and
macroeconomic data

This table provides descriptive information of the futures contracts, inventory level and hedging positions of
each commodity considered as well as macroeconomic data. The sample period is January 2000 to February
2020. In panel A, descriptions of commodity specific data is shown, which include commodities of crude oil
(CL), heating oil (HO), natural gas (NG), copper (HG), gold (GC), silver(SI) and platinum (PL). The columns
headed Excess Return list the arithmetic mean (mean), standard deviation (S.D.), skewness (Skew), kurtosis
(Kurt), augmented Dickey-Fuller (ADF) test and Jarque-Bera (J-B) tests statistics. The columns headed
Invt. presents the F -statistics of the regression of monthly de-trended inventory level against seasonal monthly
dummies. The column headed HP +% shows the occurrence of net short positions taken by commercial traders
during the sample period. Panel B shows the arithmetic mean (mean), standard deviation (S.D.), skewness
(Skew), kurtosis (Kurt), augmented Dickey-Fuller (ADF) test and Jarque-Bera (J-B) normality tests statistics
of the growth rates of CPU index, Baltic dry index (BDY), 3 Month Treasury-bill yield (TB), Default spread
(DFS), VIX, S&P 500 index (SP), term spread (TS) and Economic policy uncertainty (EPU) index. The
asterisks ***, ** and * represent significance at the 1%, 5%, and 10% levels, respectively.

Panel A Commodity Specific

Excess Return Invt. HP

Mean S.D. Skew Kurt ADF J-B F stats. +\%

CL 0.073 1.056 -0.287 3.486 -13.47∗∗∗ 5.32∗∗ 4.44∗∗∗ 84.7%
HO 0.077 1.009 -0.003 3.847 -13.85∗∗∗ 6.62∗∗∗ 4.74∗∗∗ 94.2%
NG 0.092 1.661 0.646 5.188 -15.20∗∗∗ 62.26∗∗∗ 74.48∗∗∗ 51.7%
HG 0.089 0.900 -0.056 6.475 -13.91∗∗∗ 116.69∗∗∗ 0.20 80.2%
GC 0.099 0.575 -0.089 3.721 -17.00∗∗∗ 5.06∗∗ 0.04 34.3%
SI 0.100 1.026 0.085 3.780 -16.34∗∗∗ 5.87∗∗ 0.15 95.9%
PL 0.058 0.773 -0.645 5.722 -14.10∗∗∗ 87.58∗∗∗ 0.51 98.8%

Panel B Macroeconomic

Mean S.D. Skew Kurt ADF J-B

CPU 0.407 1.969 8.504 99.188 -16.14∗∗∗ 93413.41∗∗∗

BDY 0.023 0.227 0.448 5.220 -13.70∗∗∗ 55.09∗∗∗

TB -0.008 1.577 -5.742 89.841 -14.66∗∗∗ 75115.65∗∗∗

DFS 0.006 0.105 1.523 10.222 -13.15∗∗∗ 598.58∗∗∗

VIX 0.026 0.239 1.588 7.490 -17.03∗∗∗ 294.49∗∗∗

SP 0.004 0.043 -0.548 4.595 -14.72∗∗∗ 35.96∗∗∗

TS 0.345 4.844 12.598 172.115 -15.90∗∗∗ 286270.52∗∗∗

EPU 0.047 0.335 2.164 11.300 -18.40∗∗∗ 854.92∗∗∗
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conventional levels. Panel B of Table 2 reports the sample statistics for the growth

rates of CPU and macroeconomic control variables. The growth rate of CPU index

shows positive mean and high dispersion. The results also indicate no unit root

and reject the normality test with positive skewness and kurtosis.

2.3 Empirical model

2.3.1 Quantile regression

Our primary motivation is to study the responses of the commodity futures prices

to CPU shocks under different circumstances. Thus, the quantile regression pro-

posed by Koenker and Bassett Jr (1978) is applied to demonstrate the conditional

distribution of commodity futures returns (yt). Qyt(τ |Xt) represents the τ
th con-

ditional quantile of the dependent variable, which is influenced by CPU and other

control variables as in Equation (3):

Qyt(τ |Xt) = i(τ) + γ(τ)Xt, (3)

where Xt are the (k ∗ 1) dimensional vector of explanatory variables at time t

and the parameters i(τ) and γ(τ) account for the unconditional quantile and the

changes in the independent variables on the return quantile, respectively. The pa-

rameter values in the parameter vector γ(τ) capture the structure of the dynamics

between the dependent and independent variables across τ , where τ ∈ [0, 1]. In

any particular τ , if γ(τ) is statistically different from zero it indicates significant

impact from the explanatory variable to the dependent variable. If γ(τ) values

are similar (different) between low and high quantiles, the dependence structure

is symmetric (asymmetric) (see Baur (2013)).

In this study, we choose seven quantiles (0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95). Pre-

vious literature (e.g.Naifar (2016)) has indicated lower quantiles (0.05, 0.1, 0.25) as

bearish, the medium quantile (0.5) as normal, and upper quantiles (0.75, 0.9, 0.95)

as bullish markets, respectively.

For a given τ , the estimated coefficients in Equation (3) were obtained by
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solving

argmin
T∑
t=1

ρτ (yt − i(τ)− γ(τ)Xt), (4)

where ρτ (υ) = υ[τ − I(υ < 0)] is quantile loss function. I(•) is an indicator

function of the residual vector. The minimization problem in Equation (4) can be

formulated as linear programming problems.5 Standard errors for the parameters

are estimated using the design matrix bootstrapping procedure.

Accounting for both CPU and macroeconomic factors, the empirical model

investigates the effect of CPU shocks on each individual commodity returns in a

quantile regression framework with other control variables as follows:

Qyt(τ |Xt) =iτ + γ1(τ)CPUt + γ2(τ)BDYt + γ3(τ)TBt + γ4(τ)DFSt

+ γ5(τ)V IXt + γ6(τ)SPt + γ7(τ)TSt + γ8(τ)EPUt,
(5)

2.3.2 Quantile mediation model

To further investigate the pathways through which the commodity futures prices

respond to climate policy uncertainty, we use the mediation models. The con-

ventional mediation model specifies the variable of interest Y (e.g., commodity

prices), treatment or exposure X (e.g., CPU), and M as the mediator of interest

(e.g., inventory level and hedging pressure) and characterises the pathway analysis

using Equations (6) and (7). The parameters α, β and γ
′
refer to the associations

between the pairs (X, M), (M, Y) and (X, Y) respectively; γ normally refers to

the association between X and Y without considering M. The common approach

to estimating mediation decomposes the total effect (γ) of treatment or exposure

as the sum of indirect (αβ) and direct effects (γ
′
) following the seminal paper of

Baron and Kenny (1986).6

OutcomeModel : Y = i1 + βM + γ
′
X + u (6)

MediatorModel :M = i2 + αX + v (7)

5For the quantile regression parameters estimation, we use interior point algorithm, proposed
by Koenker and Park (1996), in Matlab.

6A detailed review of statistical mediation analysis is beyond the focus of this paper and
interested readers can refer to MacKinnon (2012).
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Such conventional mediation techniques do not accommodate a potential me-

diating effect between the outcome and exposure for other parts of the outcome

distribution beyond the mean. They assume that the mediational relationship

is the same for the mean outcome variable as it is for outcome extreme values.

Shen et al. (2014) combine the traditional mean-based mediation models with

conditional quantile analysis and demonstrate different mediating effects across

the outcome distribution using the Healthy Places data. In their study, different

estimation and inference methods are compared and recommendations are given.

We follow their suggestions of estimation method and inferences for our quantile

mediation analysis.

Equations (8) and (9) specify the conditional quantile analog of the mediation

model from Equations (6) and (7) where X, M, Y and parameters are defined as

above:

QuantileOutcomeModel : Qyt(τ |Mt, Yt, Zt) =i1(τ) + β(τ)Mt+

γ
′
(τ)Xt + ψ(τ)Zt

(8)

MediatorModel : E(Mt|Xt, Zt) = i2 + αXt + ϕZt (9)

The estimation strategy can directly build on the regression based approach of

Causal Steps method (Baron and Kenny (1986)), which separately estimates re-

gressions of mediator and outcome models in Equations (6) and (7). We apply

the same principle to quantiles of outcome distribution. Specifically, the quantile-

analog of the Causal Steps method estimates the parameters of Equation (8) using

linear regression and conducts quantile regression to estimate the parameters in

Equation (9).7 We adopt the simplest inference approach as in early literature on

mediation - Joint Significance Test - suggested by MacKinnon (2012), which does

not entail assumption on probability distribution of the product.

7Shen et al. (2014) compares different approaches for estimating (and making inferences
about) such quantile mediation model and find that the regression-based approach embedded in
the Causal Steps method produce almost the same estimate of indirect effect as the one from
the Quantile Causal Mediation Effect approach of Imai et al. (2010).
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3 Results and discussions

This section summarizes the dynamic relationship between commodity futures

returns and CPU index as well as macroeconomic fundamentals. We will present

the ordinary least squares (OLS) regression as the baseline results in subsection

3.1, quantile regression results in subsection 3.2 and channel analysis discussion in

3.3.

3.1 OLS regression results

As the baseline, OLS regressions are estimated for each commodity against the

CPU index and macroeconomic factors and the results are reported in Table 3.8

We observe that CPU index shows a negative effect on the current returns of all

metal commodities and a positive relationship with energy commodities. The rela-

tionship is only significant for silver at 5% significance level. A one unit change in

CPU produces a silver price return of -6.6% over 1-month as compared to its mean

monthly return of 10%. The estimated coefficients indicate that higher uncertainty

in respect to climate policy or climate risk may discourage metal consumption,

which has high greenhouse gas emissions (GHG) footprint in the mining process9.

This potential mechanism is supported by the findings from Gavriilidis (2021)

about the strong negative relationship between CPU index and CO2 emissions.

Regarding the control variables, the intertemporal substitution of marginal rate

of commodity investors - the stock market (proxied by S&P 500) exert significant

positive impact on the commodity markets, except for gold, similar to the findings

reported in Silvennoinen and Thorp (2013). These results are in line with the

findings of increased co-movement of commodities with other asset classes during

the decade after 2004, see e.g. Bhardwaj et al. (2015). Most commodity prices are

observed to move in the opposite direction to the short-term (expect natural gas)

8We also included monthly dummy variables in all the OLS analysis and the results are similar
with the ones reported without seasonality dummies. The results using seasonality dummies are
not reported but are available from the contact author upon request.

9McKinsey reported that the mining sector is responsible for 4 to 7 percent of
greenhouse gas (GHG) emissions globally. The report can be found from the web
page https://www.mckinsey.com/business-functions/sustainability/our-insights/sustainability-
blog/here-is-how-the-mining-industry-can-respond-to-climate-change.
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Table 3: Commodity futures returns, CPU index and macroeconomic fundamen-
tals: OLS regression results

This table displays the results of simple regressions of individual commodity futures returns against the CPU
index and macroeconomic factors. The monthly data between January 2000 and February 2020, total of 241
observations, for each commodity analysis. Adj R2 denotes the adjusted R2. Estimated coefficients and their
t-statistics after adjusting with Newey and West (1987) and 12 lags in parenthesis below are presented. BDY,
TB, DFS, SP, TS and EPU denote Baltic dry index, 3 Month Treasury bill yield, Default spread, S&P 500
index, term spread and Economic policy uncertainty index, respectively. Intercepts are included in each regression
estimation but their results are not displayed due to space constraint. Note: ∗ ∗ ∗, ∗∗, ∗ respectively indicate
statistical significance at the 1%, 5% and 10% levels.

CPU BDY TB DFS VIX SP TS EPU Adj R2

CL 0.021 0.706* -0.05 -1.829*** -0.162 5.083 -0.003 -0.157 14.08%
(0.664) (1.892) (-1.092) (-2.892) (-0.299) (1.49) (-0.273) (-0.895)

HO 0.035 0.596** -0.026 -1.753*** 0.002 5.696* -0.034*** -0.104 15.27%
(0.994) (1.978) (-1.079) (-2.786) (0.004) (1.907) (-16.704) (-0.639)

NG 0.059 0.617 0.005 -0.906 -0.55 0.016 -0.09*** 0.276 6.05%
(1.585) (1.452) (0.075) (-1.274) (-0.915) (0.005) (-13.547) (1.057)

HG -0.014 0.371 -0.037* -2.087*** 0.055 7.819*** -0.007** 0.234 23.64%
(-0.443) (1.619) (-1.853) (-3.966) (0.194) (4.097) (-2.502) (1.193)

GC -0.009 0.128 -0.053*** -0.789 0.081 -0.001 -0.006*** 0.226** 2.27%
(-0.376) (0.556) (-3.656) (-1.487) (0.409) (-0.001) (-2.714) (2.224)

SI -0.066* 0.443 -0.074** -0.946 -0.199 2.635 0.005 0.36** 4.45%
(-1.841) (1.13) (-2.255) (-1.302) (-0.633) (1.131) (1.242) (2.187)

PL -0.02 0.301 -0.062** -1.349** -0.093 2.756 -0.008*** -0.224 11.08%
(-0.704) (1.013) (-2.591) (-2.292) (-0.242) (1.141) (-3.23) (-1.107)

and long-term (except silver) interest rates. When interest rate is higher, Frankel

(2006) attributes the lower commodity prices to the lower demand for inventory

caused by higher storage cost and higher supply from incentive of higher returns

of proceeds of commodity sold by producers. Similar to findings of Bessembinder

and Chan (1992), all commodities exhibit negative relationship with default spread

and the results are significant for crude oil, heating oil, copper and platinum at

conventional levels. Gold and silver act as safe heaven (with significant positive

responses) to higher economic policy uncertainty. In contrast, the option volatility

index VIX, commonly used in the literature to explain financial market uncer-

tainty, appear to play a slightly less important role in determining returns. No

commodity shows significant negative responses to VIX positive shocks. The re-

gression coefficients of BDY index have the predicted sign: as the higher BDY -

a leading indicator of economic activity, thus reflecting demand for raw materials.

All the commodity returns have positive signs but only crude oil and heating oil

are statistically significant at 10% and 5%, respectively. Overall, the OLS regres-
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sion explains the copper the most (adjusted R2 being 23.65%) and gold the least

(adjusted R2 being 2.27%).

3.2 Quantile regression results

To explore the heterogeneity of the effect of CPU on commodity futures prices,

in this subsection we discuss the quantile regression results for commodity futures

returns and CPU index. The quantile model estimation results are displayed in

Table 4. Concerning the energy commodities, the CPU index negatively affects

futures returns in lower quantiles for crude oil and heating oil. The estimated

coefficients are significant at 10% for crude oil only at 5th percentile and at 5%

level for heating oil at 10th and 25th percentiles, despite the fact that the OLS

coefficient estimates are positive yet insignificant at conventional levels. These

results indicate that in times of bearish markets, the increasing climate policy

uncertainty is accompanied with a decrease in futures returns for crude oil and

heating oil. This may be related to the market demand supply conditions. When

commodity futures returns are lower, the lower demand for the commodity can

be further impeded with concerns about climate policy instability. The produc-

tion of commodity is relatively inelastic (Kogan et al. (2009)). When facing high

climate policy uncertainty and commodity demand uncertainty, commodity pro-

ducers may change their inventory holding strategies to store more to prepare for

future potential stock-outs. Both crude oil and heating oil respond positively, yet

insignificant, to the CPU shocks at the median and high quantiles, except crude

oil at 95th quantile. On the other hand, natural gas shows significant positive

responses to the CPU shocks from the bad (τ = 0.05) condition, despite that the

OLS estimation result is of low magnitude and insignificant. Under the bearish

market condition, the estimated coefficient is at high economic value and signifi-

cant at 10%, which suggests that natural gas can potentially be a good hedge tool

against heightened climate policy risk. Overall, the varying responses across quan-

tiles for all three energy commodities imply that CPU shocks exert asymmetric

impact on energy futures, depending on the state of the market.

Regarding the metals futures, the impacts of CPU shocks on commodity returns

are significantly negative in the lower quantiles for four of them, similar to the
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Table 4: Estimation for the Commodity futures returns, CPU index and macroe-
conomic fundamentals: Quantile regression results

This table displays the quantile regression results of commodity futures returns against the CPU
index and macroeconomic factors. The monthly data between January 2000 and February 2020
for each commodity analysis. OLS regression results are also included in the table under the ’OLS
’ for reference. The control macroeconomic variables of BDY, TB, DFS, SP, VIX, TS and EPU
are also included in the quantile regressions but left out of the table for brevity. Standard errors
are estimated using the design matrix bootstrapping procedures. The t-statistics are presented in
parenthesis below the coefficients. Note: ∗ ∗ ∗, ∗∗, ∗ respectively indicate statistical significance at
the 1%, 5% and 10% levels.

Q(0.05) Q(0.10) Q(0.25) Q(0.50) Q(0.75) Q(0.90) Q(0.95) OLS

CL -0.095* -0.031 -0.009 0.046 0.021 0.011 -0.004 0.021
(-1.829) (-0.71) (-0.479) (1.379) (0.707) (0.546) (-0.666) (0.664)

HO -0.048 -0.101** -0.074** 0.057* 0.041 0.022 0.014 0.035
(-1.225) (-2.088) (-2.016) (1.728) (1.277) (0.666) (0.401) (0.994)

NG 0.007 0.124* 0.081 0.047 0.028 -0.028 -0.091 0.059
(0.505) (1.798) (1.563) (0.879) (0.74) (-0.664) (-0.883) (1.585)

HG -0.16*** -0.183*** -0.058* -0.042 0.01 -0.003 -0.021 -0.014
(-5.003) (-6.427) (-1.961) (-1.513) (0.703) (-0.49) (-0.755) (-0.443)

GC -0.094*** -0.094*** -0.035 0.019 0.005 -0.01 -0.026 -0.009
(-3.029) (-3.225) (-1.523) (0.979) (0.446) (-0.565) (-0.979) (-0.376)

SI -0.268*** -0.072 -0.01 -0.029 -0.053 -0.074 -0.078 -0.066*
(-4.726) (-1.451) (-0.431) (-0.94) (-1.227) (-1.339) (-1.207) (-1.841)

PL -0.051 -0.107*** -0.09*** -0.045* -0.004 0.02 -0.022 -0.02
(-1.451) (-2.635) (-3.126) (-1.913) (-0.488) (0.858) (-0.701) (-0.704)
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results of crude oil and heating oil. These results may be due to the reason that

during bad market conditions, an increase in CPU shocks are considered as an

increased risk and thus impeding further the demand for metals. The climate

policy uncertainty potentially drives up the hedging pressures from producers.

Under such circumstances, the hedging pressure premium increases and futures

prices decrease. Different from energy futures, under normal market conditions

(τ = 0.5) futures returns of copper, silver and platinum also respond negatively to

the CPU shocks, with platinum significant at 10% level; and under extremely good

market conditions (τ = 0.95), CPU shows negative effects for all four commodity

prices, albeit insignificant at conventional levels.

Overall, we observe that under bad market conditions most commodities show

significant negative relationships with CPU shocks, except natural gas. And their

responses (except silver) to CPU index vary, even with alternating signs, across

quantiles. Silver shows persistent negative relationship with CPU at all market

conditions investigated and is the only commodity with a significant result in the

OLS estimation. On the contrary, natural gas, as a cleaner energy, demonstrates

positive responses to high CPU at bearish market conditions and can be considered

as hedging tool of climate policy risk.

3.3 Channel analysis results

Given the heterogeneous effects under different market conditions for energy and

metals, in this subsection we continue exploring plausible mechanisms behind the

significant impacts of CPU. Relying on the two commodity pricing theories, we

focus on inventory level and hedging pressure as the potential mediators. We em-

ploy a two-step procedure described in Subsection (2.3.2) and present estimation

results in Table (5), where the inventory and hedging pressure as the intermediary

variable are displayed separately in panel A and panel B. Since the quantile re-

gression results show significant relationships for commodities at low and median

quantiles only, our mediation quantiles analysis will also discuss the results under

bearish and normal market conditions.

First, we assume that increased CPU can affect the commodity inventory hold-

ing strategy, therefore influencing the commodity futures prices. As a first step,
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we explore whether our potential channel variable inventory level is correlated

with CPU shocks. In panel A of Table (5), the column headed with α (follow-

ing Equation (9)) shows a negative influence of CPU on inventory level for most

commodities, except crude oil and gold. The estimated coefficient is statistically

significant for copper at 5%, which indicates that CPU hinders inventory holding.

After establishing the association between our potential channel variable and CPU

shocks, in the second step of channel analysis, we include the channel variable as

additional covariates as in the quantile outcome equation (Equation (8)). The

results show that CPU and inventory (captured by γ′ and β in respectively) both

have significant negative effects on commodity futures returns across the quan-

tiles from Q(0.05) to Q(0.25). These findings indicate that the mediating effect

of inventory level on commodity futures return is significant. A possible explana-

tion is that an increase in climate policy risk poses increased uncertainty about

the future demand of commodities, given potential future high carbon emission

standards. Such concerns will demotivate producers to stock up the commodity

and thus make them reduce inventory holding and sell more commodities in spot

and/or futures markets, which causes commodities prices to decline. Although the

mediating effect of inventory level is not significant for other commodities studied,

we still observe negative relationship between inventory levels and commodities

futures returns.

Second, we also assume that CPU influences the commodity futures prices

through risk premiums provided by hedgers to speculators. During times of high

CPU, demand uncertainty of consuming high carbon footprint commodities is

high. Thus, commodity producers want to sell more commodity futures contract

to hedge. Under such circumstances of high uncertainty, the hedging pressure from

trader positions to sell commodity futures is higher. To entail more speculators

to buy futures, hedgers need to offer to sell the commodity at a lower price. In

panel B of Table (5), the hedging pressures of crude oil, heating oil and gold are

negatively related to CPU, where the coefficient is significant at 10% for crude oil.

Against our expectation, these findings suggest that hedgers of these commodity

markets take fewer short positions when facing high CPU. On the contrary, CPU

has a positive influence on hedging pressure of natural gas, copper, silver and

platinum and the estimated coefficient is significant at 5% for natural gas, which
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indicates overall more short positions are taken by hedgers, consistent with hedg-

ing pressure assumption. Although the link between CPU and hedging pressure

is established for crude oil and natural gas, in the second step the association be-

tween hedging pressure and commodity futures returns (measured by β) are only

significant for crude oil at Q(0.10) and Q(0.25) and for natural gas at Q(0.05)

and Q(0.50), which suggests significant indirect effect (αβ) of hedging pressure for

the impact of CPU on commodity futures prices. However, under these market

conditions, the quantile analysis does not show significant relationship between

CPU and commodity returns without considering intermediate variable, captured

by columns of γ. Thus, there is no evidence supporting the mediating effects of

hedging pressure on the impact of CPU on commodity futures prices.

In sum, our mediation quantile analysis shows some evidence of mediating

effect of inventory level, but not of hedging pressure. Specifically, CPU reduces

commodity futures returns for copper through reducing the inventory holding at

low quantiles, which affects the supply dynamics given the rigidity of commodity

production.

4 Summary and Conclusion

This paper examines the effect of climate policy uncertainty shock on individual

commodity futures returns. This study is meaningful for investors, commodity

producers and policy makers, given the increasing climate risk and government

policies tasked to mitigate the same climate risk. Our findings could help inform

policymakers how their decisions might impact the commodity markets under var-

ious market conditions. Commodities have been receiving increasing attention

during the recent decades under the financialization. Investors shall be alert to

the climate policy uncertainty in terms of portfolio composition and risk manage-

ment. This study contributes to the literature on nexus of climate related risk and

commodity, which is an under-studied strand. In this study, we collect the histori-

cal monthly dataset covering the period between January 2000 and February 2020

for energy and metal commodities. To gain a more detailed understanding of the

impact from CPU, we also consider two potential channels - inventory level and

hedging pressure.
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Our study employs the quantiles regression to investigate the impact of CPU

on commodity futures under distinct market conditions. Our results reveal several

interesting findings. Different from the OLS results that only silver futures returns

show significant negative responses to uncertainty of climate policy, we find that

CPU has a significant negative (positive) impact on returns of all commodities (ex-

cept natural gas) in bearish market conditions (between τ = 0.05 and τ = 0.25).

This suggests that energy and metal commodity futures factor in climate policy

uncertainty, along the same direction (except natural gas). Under normal market

condition (τ = 0.05), energy and metals behave differently, where heating oil is

the only commodity that shows a significant positive response to CPU and plat-

inum is the only commodity moving reversely with CPU. When market conditions

are bullish, we find the dependence of commodity returns on CPU is heteroge-

neous among energy and metal commodities and not statistically significant at

conventional levels. These results indicate that when commodity prices are at low

quantiles, government, investor and producers shall be cautious of the negative

impact from climate policy uncertainty. On the contrary, natural gas price moves

in the opposite direction to other commodities under the bearish market, which

is found to respond positively to CPU and can serve the role of hedging climate

policy risk.

For the purpose of channel analysis, we conduct mediation quantile model,

where inventory level and hedging pressure are mediator variables. Although in-

ventory data may suffer from measurement error, we show that the state of inven-

tory plays a role in mediating the impact from CPU to commodity futures price for

copper but not other commodities. Specifically, the mediating effect of inventory

level indicates that CPU index triggers the reduction of inventory holding and

increases of commodity supply in the market which affects the commodity prices

under bearish market. Regarding the other channel variable - positions of futures

traders, we do not find supporting evidence of the mediating effect, although net

traders positions of crude oil and natural gas do significantly respond to CPU

shocks.

Taken together, our study highlights the importance of understanding the im-

pact of climate policy risk on commodity futures markets. In our efforts to build

environmentally friendly societies, our results shed lights on the influences of un-

24



stable government policy on commodity relevant participants, e.g. producers’ in-

ventory holding strategies and hedging decisions.
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