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Abstract: 
African countries face a dual challenge of building broad-based prosperity for their citizens amidst the threat of climate change 
and the recognition of the need for global greenhouse gas emissions reductions. While these two issues are increasingly 
discussed in tandem in policy circles, the research has typically considered them separately, resulting in energy decarbonization 
plans that fail to consider critical development needs and contribute to persistent energy poverty. This paper reviews the state 
of knowledge on energy transition modeling and projections in Africa, with special attention to development imperatives and 
the commitment to eliminating greenhouse gas emissions. We analyzed 156 peer-reviewed research papers that cover part or 
the whole of Africa, concerned with the issue of the energy transition and that are model-based or scenario-based. Our analysis 
revealed that i) Energy transition modeling is a recent but fast-growing phenomenon in Africa, with over 90% of papers 
completed after the Paris Agreement in 2015 ii) despite the complexities involved, only a handful of scenarios are often 
presented, largely focused on 2030 or 2050 time horizons, with little to no considerations of social and political considerations 
that may hinder implementation, iii) projections of energy mix and emissions pathway are the key objective in general, with 
only 10% of the papers reviewed considering development as a central outcome, iv)  technologies such as carbon capture, 
nuclear, or hydrogen, that stand to play a vital role toward a low or zero carbon transition are among the least considered, and 
v) nearly two-thirds of the research was produced without an author based on the African continent. We discuss the significance 
of these findings and reflect on ways to further enhance knowledge leadership to guide a more practical approach to tackling 
climate change and promoting socio-economic development in Africa.  
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1. Introduction 

In the last quarter century, the African continent has been marked by a significant uptick in economic 
growth and improved governance. It is now usual for African countries to feature among the fastest-
growing economies in the world. Varying levels of improved human development have accompanied this 
economic growth, and poverty rate has fallen from 53% in 1990 to 39% in 20195. Poverty remains high, 
however, and even those who no longer fall below the poverty line are vulnerable and far from reasonable 
aspirations for human prosperity. Scholars have debated ways to sustain the growth and structural 
transformation in Africa. One focal point of this debate is whether the fast-growing service sector, often 
marked with low productivity jobs, can carry the continent much further. While some argue that Africa 
cannot escape traditional manufacturing as a pathway to development, as it has been in most parts of the 
world (Abreha et al., 2021) others are more optimistic that Africa can leapfrog into the services 
(Newfarmer et al., 2019; Nayyar et al., 2021).  

In separate literature, there are debates about when and how Africa can eliminate greenhouse gas 
emissions. On the surface, the discussion has focused on how Africa can transform its economies while 
maintaining its low level of emissions. However, the analysis tends to prioritize climate mitigation efforts 
and highlight how decentralized and low-carbon energy technologies can serve as the basis for African 
countries’ energy systems (IRENA et al., 2020; and World Bank Group, 2021). On the other hand, 
countries across Africa have adopted a development vision that includes a significant manufacturing base6. 
Special Economic Zones (SEZ) or industrial parks have grown significantly over time and there are 
estimated to be 237 SEZs across 47 African countries currently (UNCTAD, 2021a). There are many 
different development pathways for Africa, and each has different implications for the climate. The 
discussion about African development, economic growth, and poverty reduction is tightly tied to the 
climate discussion, especially regarding structural transformation.  

In this paper, we analyze the state of literature on energy transition modeling in Africa and assess 
the extent to which it considers the development agenda. We assess, i) the evolution of energy transition 
modeling over time and across the continent, ii) the extent to which existing literature accounts for the 
continent’s pressing development challenges, iii) the extent to which all available technologies are 
considered or restricted in current models, and iv) how this knowledge generation and intellectual 
leadership evolves and informs global policy formulation on Africa.  

We extract and analyze information from papers published between 2000 and 2021 in peer-
reviewed academic journals that include empirical and theoretical analyses regarding energy transition 
issues to answer these questions. We focused on papers that were scenario-based with energy mix 
projections and related outcomes such as CO2 emissions, energy consumption, or development outcomes. 
The screening retained 156 papers that meet all our inclusion criteria7. We extracted detailed information 
from each paper, including the number of scenarios, the projections horizon, the geographical coverage, 
the technologies considered or excluded, and whether development is an outcome of interest or not. 
Additionally, we coded the information about the authors and their affiliations along with some attributes 
of the journals in which the papers are published8.  With this data, several findings stand out. 

 
5 Poverty headcount ratio at $2.15 a day (2017 PPP). 
 
6 Africa Union (AU) (2015).  
 
7 The screening process’s details can be found in the methodology section. 
8 The full questionnaire used to extract information from the papers can be found in appendix. 
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First, the body of knowledge on energy transition modeling on the African continent is growing 
quickly, but it is largely a new phenomenon. Over 90% of the research in this space was published after 
the 2015 Paris Agreement, and 60% was published during the last three years prior to 2021. In terms of 
spatial coverage, over one-third of the studies focus on the two largest economies on the continent, Nigeria 
and South Africa. Nearly half of the countries in Africa are not covered in the research papers examined. 
The majority of the studies (58%) focus on a single country, whereas 21% of the studies analyze the region 
as one entity. The top three most covered countries are South Africa, Nigeria, and Ghana. The countries 
that tend to receive the most attention are larger countries, both in terms of the GDP and/or the population; 
whereas we found no relation between the GDP per capita or CO2 emission per capita.  

Second, the vast majority of the papers model the 2030 horizon, followed by the 2050 horizon, 
both of which are global targets. The 2030 horizon relates to the United Nations’ sustainable development 
goals and the 2050 horizon is often considered a reference point for the global net-zero emissions target.   

Very few papers discuss the pathways to desired transition targets and focus instead on the end 
line or target date for net-zero emissions. No paper has consistently discussed in a systematic way how to 
move from the present state to the desired end line on a year-per-year or decade-by-decade basis. 
  Additionally, a very limited number of scenarios is considered. Half of the papers have fewer than 
three scenarios and over 90% of papers have a maximum of six scenarios. Considering the complexity 
and the multi-dimensionality of the issues at hand, one would expect larger numbers of scenarios that 
reflect the uncertainties and normative choices that are typically at play in decision-making at the nexus 
of economic development, energy transition, and emission reduction.  

Third, climate goals are the most predominant in the papers reviewed; 90% of papers focused on 
determining the optimum energy mix and 60% on the emissions pathways for meeting climate goals. Only 
10% of the papers included the development dimension as an outcome of interest. For papers that 
considered development, the projected electricity consumption and economic growth projections were 
rather modest. The largest per capita electricity consumption projection for sub-Saharan Africa (SSA) in 
2050 was pegged at 1,500 kWh, which represents almost half of the global average in 2017 and is even 
more insignificant when compared to OECD and the U.S. consumption levels (7,992 kWh and 12,573 
kWh, respectively). These consumption targets seem to be driven by Africa's historically low economic 
development and electricity demand dynamics, but it may very well lock the continent in a low-ambition 
target. Also, the minimum target for Tier 2 of the Multi-Tier Framework (MTF)9 developed by the World 
Bank that is sometimes used are extremely insufficient for productive use and to achieve better living 
conditions that correspond to the level of modern society.  

Integrating large shares of renewables into the grids comes with significant system costs (IEA, 
2011). We explored the extent to which papers considered the extra investments needed to meet the extra 
systems costs that come with the integration of high shares of renewables in the energy mix. We find that 
an overwhelming majority of the papers do not consider the cost of the transition. Only 4% of the papers 
go beyond the cost of the energy technology and to discuss the cost of the energy transition.  

Fourth, in terms of technologies considered, we found that despite the push against fossil fuels as 
a transition fuel in Africa, most of the papers featured them in the transition path projections. Very few 
papers restricted their technology scenarios for the transition to the rather unrealistic assumption of a 
renewables-only future (See Wu et al., 2017; Jacobson et al. 2018; and Timmons et al., 2020). Also, among 

 
9 The MTF defines access to energy services (including electricity and modern energy cooking) that goes beyond binary 
metrics and includes multiple dimensions such as adequacy, availability, reliability, quality, affordability, legality, health, and 
safety. The framework comprises six tiers of access, ranging from Tier 0 (no access) to Tier 5 (full access), and involves 
different uses. For instance, Tier 2 of household electricity access corresponds to an annual electricity consumption between 
73 kWh and 365 kWh for general lighting, phone charging, television, and fan (see Bhatia and Angelou (2015)). 
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the least studied are technologies such as carbon capture, hydrogen, or nuclear energy, whereas these are 
key technologies that the IPCC recognizes as playing a key role in reaching global net-zero emissions 
(IEA, 2021; IPCC, 2022; and IRENA, 2022). Solar, wind, and hydro were by far the most considered 
technologies across board and were predominant in the long-run energy mix.  

Finally, regarding knowledge generation, whereas Global North-Global South collaboration is 
often encouraged as a means of knowledge exchange, we found that only 12% of the papers feature such 
collaboration.  The overwhelming majority of the papers are exclusively authored by researchers based 
outside of Africa (63%) whereas 25% of the papers are produced by researchers based on the continent. 
The fact that the researchers in this space are predominantly based outside of the continent may not be an 
issue in itself, provided that approaches do not differ significantly between the Africa-based and non-
Africa-based researchers. However, we identified some trends which are worth highlighting. First, the 
publications without Africa-based authors are published in higher-impact factor journals, and the authors 
have much higher citations. To the extent that these papers influence global policy debates, it implies that 
Africa’s voice in the knowledge space is driven by intellectuals not based on the continent. To assess the 
policy influence of the papers produced on Africa, we considered the extent to which they are referenced 
in recent reports by the IPCC (the three working groups of rounds 5 and 6, and the special reports). We 
found that only 13% of the papers in our sample were cited in the IPCC report. We also found that policy 
citation with reference to citation in IPCC reports is disproportionally dominated (75%) by papers 
authored by researchers based outside of Africa. 

Contrary to the policy citations, we did not find any meaningful differences in the scientific citation 
of the paper10, the approaches and the analysis except for one dimension: non-Africa-based scholars are 
far more likely to study the continent as one entity, whereas most African-based authors tend to study 
individual countries. We found no difference regarding the extent to which either group considers 
development outcomes as the primary outcome of interest in their respective analysis.  

This paper contributes to existing knowledge in three ways. The first strand is the research on 
energy transition in African countries specifically, and more generally in the Global South. With the recent 
explosion of research on energy transitions in Africa, it is important to synthesize this work, identify gaps, 
and opportunities for future knowledge development. A few recent papers have done a systematic review, 
but these papers tend to focus on the technicality of the modeling and ways to enhance the models (Dioha, 
2017; Trotter et al., 2017; Emodi et al., 2019; Kang et al., 2020; Musonye et al., 2020; Apfel et al., 2021; 
and Mutezo and Mulopo, 2021).  The closest to this paper is Mulugetta et al. (2022), which recently 
discusses the alignment of climate goals with the specific development objectives of different African 
countries in designing their energy transition pathways. However, the paper does not use a systematic 
review approach and instead relies on country case studies to define a framework. This paper, to the best 
of our knowledge, is the first to focus on the synthesis of the substantive findings and the policy 
implications. Additionally, given the fast growth of the research, with over 60% of the papers produced 
just in the past three years, a regular synthesis contributes to our understanding of the research direction.  

The second strand of literature this paper contributes to involves the combination of energy 
transition research with the global economic transformation issues in the Global South, where these issues 
have been discussed in silos. Very few papers have attempted to integrate within the same framework (see 
for e.g., Kumar et al. (2021)). This paper sheds light on the subject and furthers the conversation around 
bringing these two tightly related issues within the same framework.  

Finally, our paper contributes to the growing literature looking at the diversity in the knowledge 
generation space and considering the voices from the Global South. Recent papers in several fields have 

 
10 The scientific citation of a paper corresponds to how often other scientific papers cite the paper. We used Google Scholar 
to get the number of paper citations (see Section 3 on the methodology for more details). 
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shed light on the importance of diversity in the knowledge space (Blom et al., 2015; Porteous, 2020; 
Zavale and Schneijderberg, 2020; Koffi, 2021; Koffi and Wantchekon, 2022). In the critical space of 
climate change, which could shape societies' futures for centuries, this paper is -- to our knowledge -- the 
first attempt to assess an aspect of intellectual diversity in the space of energy transition modeling for 
Africa. Furthermore, the paper adds to that literature by highlighting not only the extent of the diversity 
or the representation in the literature, but also by looking at how that diversity might or might not matter.  

The rest of the paper is organized as follows: In Section 2, we present the contextual background. 
Section 3 is devoted to the methodology, leaving out non-essential details in the appendix. Section 4 
presents and discusses the results. In Section 5, we conclude with policy recommendations.   
 
2. Contextual Background 

Africa faces different challenges, including low levels of economic development, high poverty 
rates, inadequate industrialization, weak energy systems, high vulnerability to climate change, and more. 
While there have been some recent improvements in macroeconomic indicators with the real GDP growth 
estimated to 6.9% in 2021, compared to 1.6% in 2020 (AfDB, 2022), these improvements may not be 
durable given the persistence of COVID-related drawbacks, the current war in Ukraine, and other 
uncertainties in the global economy. Africa has the lowest GDP per capita of any continent in the world, 
and projections estimate that global poverty will soon become a primarily African phenomenon with 90% 
of the world's poor living in Africa in 2030 (Beegle and Christiaensen, 2019; Calderon et al., 2019). This 
will require significant efforts to close the large historical economic development gap. The real per capita 
GDP growth must reach substantial and sustained levels to overcome persistent poverty on the continent.  

Africa also suffers from a lack of human capital, including highly skilled workforce and 
infrastructure, this hinders development efforts. Sub-Saharan Africa (SSA) has the lowest level of human 
capital (World Bank, 2020) and stands at the bottom of all developing regions in all dimensions of 
infrastructure performance (World Bank, 2017). This negatively affects the labor market through the 
reduction of labor productivity and reduces the capacity of the poor to find income-earning opportunities. 
The low unemployment rate in Africa does not reflect the reality of the labor market in the continent, 
given that only a small fraction of the African labor force is employed in formal jobs, and nearly nine out 
of ten workers engage in the informal sector, mostly in subsistence agriculture and self-employment (ILO, 
2019). 

The persistent slow economic performance of Africa is also associated with a low rate of 
industrialization, which makes the continent the least industrialized region in the world (Abreha et al., 
2021). The dominance of the service sector in a region with no industrial base is a departure from historical 
development trends observed in developed countries. More industrialization is needed to achieve a level 
of structural transformation that is sufficiently robust to induce sustained economic growth and job 
creation. A modern and adequate energy system is a prerequisite for such structural transformation and 
creates the foundation for complementarities with important factors including investment, labor, and 
technological progress. Most African countries lack adequate and equitable energy systems that are 
commensurate with their ambitions of achieving sustained economic growth. Electricity supply, demand 
and access are not sufficient in Africa, putting the region behind all other regions in the world (Kojima 
and Trimble, 2016; Blimpo and Cosgrove-Davies, 2019). 

An important set of questions arise around the intersection of energy and economic growth. First, 
is energy a limiting factor for economic development in the African context, and secondly how can the 
continent better capitalize on its large energy resources endowment to drive economic growth. Several 
studies investigate those questions, and some of them argue energy is a limiting factor for economic 
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growth (Allen, 2009; Ayres and Warr, 2009 and Malanima, 2020).  Malanima (2020) refers to the Liebig's 
law of the minimum11 to support the notion that a deficit in energy can compromise economic progress 
and future development. Moreover, using historical data, Allen (2009) and Ayres and Warr (2009) find 
that availability of cheap energy, and not technological progress as often hypothesized, has been the main 
driver of the past economic growth in other geographies. Putting this in the African context, it is 
paradoxical that African countries’ abundantly endowed energy resources have not yet been sufficiently 
exploited to power its economic progress. 

According to UNEP (2017), Africa has relatively important reserves of non-renewable energy 
sources, namely, oil, gas and coal -- representing 7.6%, 7.5% and 3.6% respectively of the world’s total. 
The continent is also endowed with large hydropower potential accounting for roughly 12% of the global 
total. It also has abundant renewable energy potential with solar irradiation ranging from 5 to 7 kWh/m2 
all year round, relatively strong wind power potential, and large amounts of land suitable for biofuel 
production. However, this energy potential has not been adequately exploited to drive development on the 
on the continent. On the contrary, electricity costs in Africa are higher than in any other region in the 
world due to many factors, including poor management and planning (Streatfeild, 2018). Governments 
frequently provide energy subsidies to make electricity affordable, mainly for poor households. 
Furthermore, electricity is not reliable, negatively affecting 80% of firms between 2008 and 2018 with an 
average of six hours of disruptions leading to losses that are estimated at about 8% of annual sales a 
significant total compared to just one hour per month of disruptions in OECD countries (World Bank, 
2018). This situation partially explains the prevalence of energy poverty in Africa. 

Given the important role of electricity in powering different sectors of the economy and improving 
human living standards, it becomes obvious that Africa likely needs to exploit more of its energy potential 
to achieve its ambitious goals of economic development and poverty eradication. However, African 
countries should adopt long-term planning for their energy transition that balances reliance on cheap 
energy resources with the imperative of addressing climate change.  

The context of climate change in Africa is unique as the continent has a low contribution to global 
greenhouse gas emissions, both historically and currently, but faces high risks of environmental 
catastrophes resulting from such global change. Africa has contributed less than 4% of current global 
energy‐related carbon dioxide (CO2)12, and has the lowest emissions per capita in the world (IEA, 2022). 
SSA’s contribution is even smaller; excluding South Africa, the entire region accounts for less than 1% 
of global emissions. Nevertheless, with a high exposure to climate change and low adaptive capacity, 
Africa is one of the most vulnerable continents (Boko et al.,2007 and Niang et al., 2014). Average annual 
economic losses from climate change are currently estimated at 5–15% of GDP per capita growth between 
1986–2015, and are projected to be much worse in the future, reaching 16–64% by 2030 under the high 
warming scenario (AfDB, 2022). With such a high risk of economic losses and given that climate 
mitigation efforts are not likely to be sufficient to avoid environmental catastrophes, countries should 
prioritize investment in adaptation (Pindyck, 2022). Thus, Africa must consider a large deployment of 
adaptation options to improve its resilience to climate change and invest more in resilient infrastructure.  

There is growing interest in climate adaptation, as expressed in Nationally Determined 
Contributions (NDCs) emerging from Africa.  The adoption rate of adaptation policy or planning by 
countries in Africa has reached 72% (UNEP, 2021). Unfortunately, the mobilization of required funding 
to implement these adaptation plans is slow. The Global Center on Adaptation (2021) has estimated that 

 
11 Liebig's law of the minimum is initially developed in agricultural science. It reflects how the scarcest essential nutrient can 
limit the growth of a plant even though other essential nutrients are abundant. 
. 
12 This is even smaller (i.e., 2.07%) if we consider the cumulative CO2 emissions from 1960 to 2018. 
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$331 billion of investment will be needed to implement adaptation strategies in 40 African countries by 
2030. These countries have committed to support 20% on average from their national budget and are 
seeking the remaining 80% from donors. However, the adaptation-related financial transfers to the 
continent between 2014 and 2018 was below U.S. $5.5 billion per year; this was half of mitigation-related 
financial support (Savvidou et al., 2021). Given the lack of concrete commitments from international 
donors to fund adaptation measures in Africa, governments in the region must rely on domestic funding 
to implement their adaptation strategies; sustained economic growth is needed to make this possible. 
Given this context, economic development cannot be neglected in any of the short-, medium- or long-term 
international climate commitments of African countries.  

Climate imperatives should be balanced with ambitious development objectives when African 
countries are planning their energy transition. Rich economies are better positioned to implement climate 
adaptation measures than poorer countries are (Smit and Pilifosova, 2003). The better developed a country 
is, the more resources it can invest resilient infrastructure and low-carbon energy solutions. Moreover, 
adopting a system-wide approach that factors in development and cost of the energy transition will 
position African economies to effectively integrate intermittent renewable energies at a large scale and 
invest in a wide range of clean firm power sources that can balance that variability on the path toward 
eventual net-zero emissions over the long term.  

Consequently, the extent to which economic development is given consideration can be used to 
assess whether a specific energy transition modeling is relevant for the context of African countries. 

 
3. Methodology 

In this paper, we conducted a systematic review to evaluate the state of energy transition modeling 
research on Africa. A systematic review is a research method that systematically assesses existing primary 
research to provide an up-to-date summary of the state of research knowledge on a specific topic (Higgins 
et al., 2019). The structure of the methodology follows the “Preferred Reporting Items for Systematic 
review and Meta-Analysis” (PRISMA) protocols that include five stages: (1) inclusion criteria, (2) 
literature search, (3) data screening and selection of studies, (4) data extraction and (5) data analysis (see 
Figure 1).  
 

3.1. Inclusion Criteria 

Given that the review focuses on research knowledge, we included only peer-reviewed papers. For 
consistency, we excluded grey literature (i.e., academic working papers, reports from government, private 
sector, or institutions, etc.). We also limited our selection to papers written in English and published from 
2000 to 202113.  

As a first step, we developed a set of criteria in line with energy transition modeling on Africa. We 
identified three key inclusion criteria.   The first is the geographical scope of the paper. We included papers 
that focus on Africa as a region, African subregions, or individual African countries. The geographical 
inclusion criterion was extended to include papers with a global scope and specific results on Africa, 
African subregions, or African countries. The second was a thematic criterion; here we focused on theses 
that align with the notion of the energy transition. In addition to the term “energy transition,” this inclusion 
criteria included the following themes: decarbonization, low-carbon transition, energy pathways, low-
carbon pathways, and net-zero emissions. We excluded studies that focused solely on sustainability issues. 

 
13 Other relevant official languages on the continent are French, Portuguese, Arabic, and Spanish, covering 31 countries. 
However, researchers in these countries more often than not, write in English. 
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Sustainability goes beyond the topic of energy and includes other environmental concerns like waste 
management, biodiversity, circular economy, recycling, and more. The third inclusion criterion concerned 
methods. Given the focus on energy transition modeling, we included empirical papers that are model-
based or scenario-based studies and have energy mix (i.e., share of given energy technologies) scenarios 
or paths. Therefore, we excluded reviews, background, and theoretical studies. 
  

3.2. Literature Search 

We used the inclusion criteria described above to search for relevant papers that were included in 
the review. For exhaustivity, we used the following major electronic databases: Scopus, Web Of Science 
(WOS), EBSCO, and JSTOR. The search resulted in a total of 2,993 papers distributed as follows: 1,716 
papers in Scopus, 1,103 papers in JSTOR, 124 papers in EBSCO, and 50 papers in WOS. In addition to 
searching these four major databases, we extended our selection to include papers from review papers and 
references. This ensured that we covered all relevant papers that are in line with our selection criteria as 
much as possible. This additional round of search produced 19 papers, with 15 papers from review papers 
and 4 papers from citations. We then uploaded 3,012 papers to Covidence, a web-based software platform 
that provides tools for primary screening and data extraction. 
  

3.3. Paper Screening and Selection  

As it is likely that some papers appear in many search engines, we first screened the total of 3,012 
papers for duplicates in Covidence. This initial screening identified 147 duplicates that we excluded in the 
analysis. We then screened the remaining 2,865 papers by title, abstract, and keywords, following the 
inclusion and exclusion criteria. We then read each of the papers and assessed whether the study satisfied 
all the three dimensions of inclusion criteria. At this stage, we excluded many papers (2,573) mainly 
because the papers did not focus on energy transition modeling. The second round of screening for full 
text involved 292 papers. Using the same inclusion criteria once again, we fully read each paper and 
excluded 136 papers, mainly because they were descriptive papers rather  than model-based or scenario-
based papers and they lacked an energy mix focus. Note that different reviewers undertook the screening 
process, and there was discussion to reach a consensus in case of disagreement. Overall, the screening 
process left 156 papers that constituted the final sample used in the analysis.  
  

3.4.  Data Extraction 

From the 156 papers, we used Covidence to extract key information that covers different variables 
used in the analysis. We started the data extraction by developing a data extraction template in Covidence 
(see Appendix for more details). Five groups of information were coded in the template: (i) authorship 
and geographical coverage, (ii) main scope of the paper, (iii) methodology and data, (iv) results, and (v) 
key challenging questions. 

The first set of information included affiliations and names of the first five authors listed in the 
paper and a list of African countries or subregions covered in the paper. It also highlighted whether this 
coverage is exclusive or extended to other regions or countries in the paper. The second set concerned 
information on whether energy, economic development, and emissions pathways are discussed in the 
paper. It also included how different economic, sociological, and political aspects are discussed in the 
paper. Thus, a classification that differentiates techno-economic systems, socio-technical systems, and 
systems of political actions was provided. In the third group, we provided information on various 
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approaches, methodologies, and levels of data disaggregation (from national to firms and households). 
Papers also differed with regards to the richness of the results and related discussions. Thus, the fourth set 
was devoted to whether the paper has short-, medium- or long-term projections, the number of scenarios, 
and whether the scenario paths were detailed and fully discussed. Finally, since several factors can affect 
the results of energy transition modeling we accounted for those factors in a fifth group. This included, 
for example, how restrictive the energy technologies considered in the paper are, how the energy cost for 
each energy technology is calculated and discussed in the paper and whether the total cost includes the 
entire energy transition cost. 

We then used the template to extract all the relevant information in Covidence. Two different 
reviewers were involved in the data extraction process and worked independently on all the selected 
papers. The reviewers met regularly to address any potential inconsistencies and clarification questions 
related to the coding and adjusted the template accordingly. After the two reviewers had completed the 
extraction, the team met to validate the extracted data. Whenever there was a divergence between the 
information provided by the reviewers, a consensus was required. The team then discussed and solved the 
inconsistencies. After the team had validated the data extraction, the final data was extracted from 
Covidence and combined with the general information on the paper, including title, abstract, name of the 
journal, year of publication, etc. 

To investigate the restrictions on the geographical coverage of our sample of papers, we collected 
additional data on the socio-demographic and economic characteristics of African countries such as GDP, 
population, official language, tourist arrivals, and the electricity consumption and CO2 emissions. This 
data was obtained from the WDI database by the World Bank.  

  
3.5. Data Analysis  

Given the scope of the review, additional information was needed to assess and record the scientific 
reputation of the authors and the impact of their papers in advancing research on energy transition and 
policy decisions (see Appendix for more details). To assess how African-based institutions are involved 
in advancing the research on energy transition on the continent, we classified the author’s affiliation and 
highlighted whether the institution is based in or outside of Africa. We also differentiated across academic, 
public, non-profit, regional, or international institutions. This classification used the information provided 
in the final data from Covidence, which is refined by using the google search engine. 

We discussed four levels of reputation: (i) The author itself, (ii) the paper, (iii) the author’s 
affiliation, and (iv) the journal. First, we provided the number of citations for each of the authors listed in 
the paper. This is performed with the academic search engine Google Scholar. Second, we used both 
scientific and policy citations of the paper. For the scientific citation, we used Google Scholar to get the 
number of paper citations. Given the international recognition of the climate change community for IPCC 
reports, we referred to policy citations as papers cited in the reports released by the IPCC. We considered 
recent IPCC reports, namely rounds 5 and 6 (all three working groups) and the special reports. Third, we 
documented the rank of the author's institution using the SCImago ranking. Note that the SCImago 
Institutions Rankings (SIR) is a classification of academic and research-related institutions which is based 
on research performance, innovation outputs, and societal impact. Given the research focus of our review, 
we primarily used the research rank that covers the following aspects: publications in terms of number 
and quality, international collaboration, scientific leadership in terms of number and excellence, open 
access, scientific talent pool, etc. Fourth, we provided the journal’s impact factor as provided on the 
journal website. The impact factor is developed by Clarivate and used as a standard proxy to assess the 
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reputation of an academic journal. It is an index that reflects the yearly mean number of citations of 
publications in the last two years in the journal. 
 

Figure 1: Paper Identification, Screening, and Data Coding Process 
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4. Results and Discussion 

4.1.Overview of Papers’ Key Attributes 

A summary of the characteristics of the papers analyzed in this study is outlined in Table 1. The 
overwhelming majority of the models focus on techno-economic systems, without much consideration of 
the socio-political constraints that matter for policy implementation. For example, a transition from the 
use of biomass to liquefied petroleum gas (LPG) may be financially and technically feasible but 
households’ habits and preferences may dampen either the adoption of the new technology or the phasing 
out of the previous one, leading to what is already often observed as fuel stacking (See Masera et al. 
(2000); Muller and Yan (2018); Ochieng and al. (2020); and Perros et al. (2022)). Similarly, phasing out 
fossil fuels for renewable energy is likely to face major internal political constraints. For instance, the 
powerful leaders from the oil sectors in oil-producing countries have significant political power to 
influence policies and delay the transition. Also, energy subsidy reforms are an extremely political and 
sensitive concern that often face complex implementation challenges with civil protests motivated by the 
fuel price increase. In our sample of papers, we found that only a handful of papers (3%) had dealt with 
those social considerations, but none addressed the political constraints. Neglecting social and political 
considerations in energy transition models, especially in the African context where cultural perceptions, 
beliefs, preferences, and political actions play an important role in social decision-making, may limit the 
possibility of implementing a transition pathway even if this is technically and economically feasible. 

The papers that met the inclusion criteria spanned both bottom-up and top-down approaches to 
energy transition modeling. Both approaches have advantages and drawbacks. Bottom-up models account 
for details of the technologies, whereas the top-down approach accounts for the macroeconomic 
relationship to the energy sector. Over two-thirds of the papers take a bottom-up approach, and another 
quarter take a top-down approach. The wide use of the bottom-up approach in modeling African energy 
transition allows a deeper exploration of several energy technologies. However, this is constrained by the 
intensive data requirements (both quality and quantity) in a region like Africa with significant data access 
limitations. Furthermore, some papers (7%) attempt to draw on both approaches by using a hybrid 
approach despite the added modeling complexity. These papers tend to complement the bottom-up supply 
side approach with the top-down demand side approach14. In line with the large use of the bottom-up 
approach, we find that the majority of papers (51%) use optimization as a methodology15. This shows that 
most of the papers on African energy transition provide optimal transition paths that are commensurate 
with cost-efficient energy solutions. However, because of the data limitations in Africa, researchers often 
approximate or extrapolate analysis based on developed countries, leading to large degrees of uncertainty 
in the input data. In turn, it means it is critical to put those optimal paths into the African context when 
interpreting them and to not rely on the model outputs as factual results.  

The modeled time horizon is another key attribute that differentiates the papers included in the 
study. A large number of the papers (46%) model the transitions through the horizon of 2030, likely driven 
by global targets related to the sustainable development goals16. The second most prevalent target year is 

 
14 The iterative process of exchanging information on energy price and quantity between the two approaches leads to 
energy market equilibrium. There are two possibilities of linking the two models: hard-linking approach with a completely 
integrated and highly complex optimization model, and soft-linking approach with separate models and manual integration.   
15 Note that 22% and 12% of papers use the simulation and econometrics methods, respectively, while there is a growing 
interest of using a combination of methods (6%) and machine learning (1%).   
16 The Sustainable Development Goals (SDGs) are a universal call to action to end poverty, protect the planet, and ensure that 
by 2030 all people enjoy peace and prosperity. SDGs were adopted by the United Nations in 2015. 
 



 

 
 

12 

2050, which is also a global target for achieving net-zero emissions17. The review shows that fewer than 
one paper in ten has scenarios beyond 2050. The scenarios beyond 2050 are particularly important for 
Africa as the African Union’s agenda 206318 is the defining baseline horizon for the continent’s 
development objectives – most of which are tightly linked to the evolution of the energy systems across 
the continent. Yet, only about 5% of the papers model a horizon beyond 2063. Thus, global targets 
determine the time horizon of the scenarios that are explored in most of the papers on energy transition 
modeling in Africa.  

Additionally, we reviewed whether the papers systematically discussed the pathways to an 
eventual energy transition or only focused on some key intermediate and endline results. We found that 
nearly two-thirds of the papers discuss findings focusing solely on the endline, usually 2030 or 2050. No 
attention is given to the pathways themselves and the interim years. The papers that have some discussions 
of the pathways restrict their focus on key intermediate years. For example, papers that model the horizon 
2050, will occasionally discuss 2030. No paper consistently and systematically discusses the pathways on 
a year-per-year basis or in an interval of years, such as a five-year basis. The lack of discussion of the 
intermediate results along the pathways can make it difficult to implement those models in the African 
context, where large investments in the energy sector are needed and should be balanced with other 
development priorities like education and health. 

Finally, we documented the total number of scenarios presented in each paper. The number of 
scenarios is important because most modeling assumptions carry uncertainties that could stem from the 
data quality to unexpected short terms shocks that could derail from the most likely transition path at the 
time of the modeling. This is particularly important in the African context where there is a lack of detailed 
data. One way to address this challenge is to present a large range of scenarios or classes of scenarios (see 
Trutnevyte (2016), Price and Keppo (2017), Rozenberg and Fay (2019), and Morris et al. (2022).  
However, as reported in Table 1Table 1: Overview of key model characteristics, half of the papers report just three 
scenarios or fewer. Furthermore, over 90% of the papers report six or fewer scenarios. Three papers stood 
out as outliers reporting respectively 99 and 3660 scenarios. For instance, Orthofer et al. (2019) use a 
multi-scenario analysis to explore uncertainties connected to shale gas exploitation in South Africa. The 
authors reported 3,660 scenarios based on shale gas extraction cost and carbon price. Bamisile et al. (2020) 
and Bamisile et al. (2021) have explored 99 different scenarios based on energy technologies combination 
in the context of Nigeria. Thus, the review shows that most of the papers report a small number of 
scenarios. Even though this is a common problem in the energy modeling space worldwide, fewer 
scenarios for the advanced economies can be justified to some extent because they have better data for 
longer periods of time. Those economies are also more stable with less variance in growth. However, this 
is especially problematic for African countries, which are poorer and more volatile (see IMF(2022b)). 

 
 
 
 
 
 

 
17 Net zero aims to cutting greenhouse gas emissions to as close to zero as possible, while any remaining emissions are 
removed from the atmosphere, by oceans and forests. 
18 Agenda 2063 is the shared strategic framework of Africa for inclusive growth and sustainable development. The 
framework takes account of past achievements, challenges, and opportunities at the national, continental, and global levels to 
provide the basis and context in which the continent’s transformation is being designed and implemented (AU, 2015). 
Agenda 2063 was adopted in 2015 by the African Union.  
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Table 1: Overview of key model characteristics 

     
    Frequency (%) N Examples 
Model Classification Techno-economic systems 95.51 149  

 Socio-technical systems 3.21 5 
448, 880, 1003, 1112, 
1156 

  Political actions systems  0 0  
 Other 1.28 2 624, 198 

Model Approach Top-down 24.32 36 
65, 123, 167, 596, 609, 
631 

 Bottom-up 68.92 102 1003, 1112, 196, 214, 334  

 Both 6.76 10 
1480, 557, 40, 266, 285, 
430, 1077 

     
Number of scenarios 0-3 49 66  
 4-6 40 54   
 7-23 8.9 12  
 24+ 2.2 3    
     

Furthest horizon  Before 2030 8.00 10 
285, 430, 802, 1216, 
1303, 1480 

 2030 38.40 48 123, 161, 196, 266, 1383 
 Between 2030 and 2050 17.60 22 65, 318, 514, 525,893 
 2050 28.80 36 107, 238,334, 529, 580 

 Beyond 2050 7.20 9 
1409, 1314, 1003, 253, 
1572 

          
Discusses transition 
path No 63.82 97  
 Yes 36.18 55  
Notes: This table presents key selected characteristics of the papers. Column 3 shows the frequency, Column 4 is the equivalent number 
of papers and Column 5 gives the identification number of selected examples of papers (see Appendix for the full list).    
 
  

4.2. Energy Transition Modeling Over Time and Space Across the Continent 

In this section, we discuss the spatial and intertemporal distribution of research on energy transition 
modeling across Africa. The continent is generally under-researched when it comes to several important 
issues and the body of knowledge may be thin at critical times for policy choices, especially at the global 
level. We found this to be the case when it comes to energy transition research. For instance, our initial 
sample includes 3,012 papers (with 1,716 on Scopus) that focus on Africa, while our search query on 
Scopus without restrictions on Africa gives a sample of 15,470 papers, showing 11% of coverage for 
Africa19.  

Even though Africa is under-researched, Figure 2 shows that energy transition modeling is a recent 
but fast-growing phenomenon in the continent. The 2015 Paris Agreement marked a critical step in climate 
action among nations. Yet, at the time of this agreement, less than 10% of the papers retained in this study 
were available (See Figure 3). This means that Africa entered the Paris Agreement with a limited 

 
19 At the global level, Candemir et al. (2021) and Elsevier (2021) have found over 1.6 million papers between 2001–2020 that 
focus on clean energy research related to net zero. Note that their search query goes beyond the specific themes like “net 
zero”, “decarbonization”, “carbon neutral” or “zero carbon” and includes SDG 7 on Affordable and Clean Energy and SDG 
13 on Climate Action. 
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knowledge base to inform its standing. There has been a steady and steep growth in the number of papers 
published on Africa since the Paris Agreement. Figure 3 demonstrates that the last three years of our 
sample (2019-2021) recorded 60% of the papers, representing 150% more than the previous 18 years 
combined. The new research can be a rich source of guidance to inform Africa’s stance and approach to 
climate action going forward.  
 

The geographical coverage of the region is equally important given the large number of countries 
in the region and the difference among them in terms of land size, population, institutions, or economic 
prospects. Modeling Africa as a unit not only may mask these differences but may also be impractical in 
terms of policy implementation. Recommendations for the continent may not align with those that may 
emanate from a careful analysis of any single country on the continent. On the other hand, most countries 
in the region lack scale for individual modeling to bear meaningful significance. We report the 
geographical coverage in Table 2 and depict it in Figure 4 and Figure 5. We found that nearly 6 in 10 
papers focus on an individual country, 21% model the entire region, and the rest are a grouping of African 
countries (9%), or inclusion of the region or countries as part of studies that go beyond the region (13%). 
The focus mostly on individual countries shows the importance that researchers attribute to countries’ 
differences. However, there are large disparities in how individual countries are considered in the papers. 
For instance, of all the studies covering individual countries, over one-third of them focus on the two 
largest economies in the region, respectively 18% for South Africa and 17% for Nigeria. Ghana is a distant 
third with 8% of the studies. Half of the countries reported no study and another twelve have only one 
study.  
 
 

 
 
 

Figure 2: Yearly number of publications 

 

Figure 3: Cumulative number of publications over time 

 
Figure 4:  Geographical distribution of country studies 

 

Figure 5: Geographical distribution of individual or group of country 
studies 

 
© GeoNames, Microsoft, TomTom

Powered by Bing

1

16

Number

© GeoNames, Microsoft, TomTom
Powered by Bing

1

20

Series1



 

 
 

15 

Table 2: Intertemporal and geographical distribution of energy transition research in Africa 

  Frequency Number 
Geographical coverage Africa Region exclusively 20,51 32 

 Includes Africa Region 4,49 7 
 Multiple African countries exclusively 8,97 14 
  One African country only 57,69 90 
  Includes selected African countries 8,33 13 

Most covered countries top 1: South Africa 17,78 16 
 Top 2: Nigeria 16,67 15 
 Top 3: Ghana 7,78 7 

Least covered countries Countries with only one study: Algeria, 
Botswana, Burkina Faso, Cameroon, Chad, 
Gambia, Liberia, Madagascar, Mali, Niger, Sierra 
Leone, Zambia 

13,33 12 

Countries not covered in 
standalone studies 

Angola, Benin, Burundi, Central African Republic, Comoros, 
Djibouti, Côte d’Ivoire, Equatorial Guinea, Eritrea, Gabon, 
Guinea, Guinea-Bissau, Lesotho, Libya, Malawi, Mauritania, 
Namibia, Republic of the Congo, São Tomé and Príncipe, Senegal, 
Seychelles, Somalia, Sudan, Swaziland/ Eswatini, Togo, Uganda, 
Zimbabwe. 

27 

 
The general pattern shows a strong correlation between the size of economies and the number of 

studies20. Similarly, the population size correlates highly with the number of studies conducted on a 
country21. Furthermore, we explore the correlation between the individual country coverage and three 
other proxies for the size of the country in per capita terms: GDP, electricity consumption and CO2 
emissions. For the GDP per capita, we find a positive but smaller correlation. Only four countries are 
covered among the top ten countries with the highest GDP per capita. The countries not covered but with 
a large per Capita GDP are Seychelles, Equatorial Guinea, Gabon, Namibia, Libya, and Djibouti. Also, 
the five most covered countries rank 6th, 19th, 16th, 22nd, 32nd, respectively in terms of GDP per capita. 
Given our focus on energy transition, we also use per capita electricity consumption as a proxy for the 
size of the country. We find similar patterns as GDP per capita with only six covered countries among the 
ten countries that have the highest per capita electricity consumption. Furthermore, we find a positive 
relation between CO2 emissions per capita and the likelihood that a country is studied. However, the top 
19 countries in terms of CO2 emissions per capita include only South Africa among the five most covered 
countries, namely, South Africa, Nigeria, Ghana, Kenya, and Ethiopia. We also find that those correlations 
are significant (see Appendix 7.1). 

 
4.3. Economic Development and Energy Transition Modeling  

 Table 3 describes how energy and climate goals and economic development objectives are addressed in 
the papers. Energy transition is inextricably linked to economic performance through energy cost, 
availability, and reliability. For most economies in Africa, the energy transition will present both 
challenges and opportunities for development prospects. Yet, for the full sample, only about 10% of papers 
consider economic growth and poverty metrics as outcomes of interest. Most studies (90%) are concerned 

 
20 The equation of the fitted line gives share of papers=0.81*percentage of African GDP+0.34 with R2=0.67. 
21 The equation of the fitted line gives share of papers=0.95*percentage of African Population+0.09 with R2=0.5. Note that 
the pattern remains after removing Nigeria and South Africa. 
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with the energy mix, and in nearly 60% of the papers, emissions is one of the variables of interest.  It is 
arguably desirable that in the context of Africa, where development outcomes are of critical interest, the 
nexus of the energy mix, emissions, and development outcomes be considered simultaneously. However, 
only 7% of the papers do so. Furthermore, we found similar patterns when we considered a subsample of 
papers that exclusively focus on the entire continent or individual country. Thus, energy and climate goals 
are prioritized over development objectives.  
 We also reviewed the assumptions that are used in the papers and found that while development 
outcomes are not often considered as outcomes of interest, they are nevertheless discussed in a greater 
number of papers (40%). Those papers discussed the development implications of their models in terms 
of economic growth, job creation, poverty, etc. However, the economic assumptions are often not clearly 
provided, making it challenging to assess the extent to which those models reflect the development 
ambition or realities of the country or the continent. 

Electricity consumption projection may be one proxy for how ambitious the economic 
development assumptions used in the paper are. Table 3 also synthesizes the per capita electricity 
consumption resulting from scenarios for all the papers that provide that information. We restricted our 
sample to papers that focus on the entire region or subregion and then compare the electricity consumption 
targets to the average electricity consumption at the global level and across the regions. We found that the 
highest target for SSA in 2050 is only 1,500 kWh, corresponding to the current consumption levels of 
countries like Colombia, Cuba, Egypt, Moldova, Tajikistan, and below the average of middle-income 
countries which is 2,037 kWh. This long-term consumption level, the highest envisioned, represents only 
less than half of the current global average of 3,152 kWh in 2017 (See OECD and IEA (2019)), one fifth 
of the OECD average and one tenth of the U.S.’s average. Within Africa, there are also some disparities 
as scenarios on Northern Africa reflect more ambitious electricity consumption targets (2,143 kWh per 
capita). Thus, we conclude that the scenarios on energy transition for SSA do not consider ambitious 
targets on per capita electricity consumption.  

The choice of electricity consumption targets seems to be driven by the data sources that are 
usually used to project the electricity demand. First, most of the scenarios use historical data and socio-
economic and demographic projections to derive the implications for future electricity consumption. 
Given the fact that SSA has a historically low level of economic development and electricity demand, the 
continent is likely to be locked in a low ambition target. Second, some scenarios use the minimum targets 
of the Multi-Tier Framework (MTF) developed by the World Bank (see Bhatia and Angelou (2015)). 
Those scenarios usually consider the minimum requirement for Tier 2, which corresponds to annual 
electricity consumption of 73 kWh for a household that uses only low-load power such as lights, a 
television, or a fan for four hours per day. This target is extremely insufficient for productive use and to 
achieve living conditions that correspond to that of modern society. Third, some papers project that future 
electricity consumption of SSA will mimic the current levels of consumption in Northern Africa. For 
instance, Bazilian et al. (2012) projects that the electricity consumption level of SSA (excluding South 
Africa) by the year 2030 will reach that of the Northern Africa in 2008 (i.e., 1285 kWh per capita). 
Moreover, Calvin et al. (2016) shows that all scenarios in SSA project an electricity use per capita in 2050 
that is below the level of Northern Africa in 2012. We did not come across any paper in our sample that 
explored the implications of SSA reaching OECD or global levels of electricity consumption per capita.  
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Table 3: Development objectives in energy transition models for Africa 

  
 

    
Full Sample Africa Region 

exclusively 
One African country 

only 
     Percentage Number Percentage Number Percentage Number 
 Outcome of 

interest 
Development (growth, 
poverty) 10,14 15 10,34 3 11,36 10 

  Emissions 59,46 88 44,83 13 63,64 56 
  Energy mix  pathway 89,86 133 82,76 24 89,77 79 
 

 
Energy-Emissions-
Development 6,76 10 6,25 2 8,89 8 

 Discusses Development implications 39,74 62     
 Discusses cost of transition 3,85 6     
 
 
 
Electricity 
consumption 
(KWh) per capita 

Minimum for SSA in 2030                                   100 
Minimum for Africa in 2030                                    599 
Maximum for SSA in 2050                                  1500 
Maximum for Africa in 2050                                   1888 
Northern Africa                                   2143 
Eastern Africa (2030)                                   1187 
Western Africa (2050)                                858-948 

Notes: For the electricity consumption (KWh) per capita, the subsample only includes papers that focus on the entire Africa or subregions. 
 

In addition to the electricity consumption targets, we also assessed the economic targets stated in 
the papers. In general, we found that most of the papers do not transparently report the economic 
assumptions that support their scenarios. The few targets for GDP growth that are used in the papers in 
which the information is available show that those economic targets are below that of the AU Agenda 
2063 target of 7%. These low economic targets do not reflect the projected population growth in Africa 
and the economic ambition of the continent as expressed in the AU Agenda 2063.  

The total cost of the energy transition goes beyond the cost of building power generation 
technologies alone as typically captured in models. It includes the extra investments needed to upgrade 
existing power infrastructure or to build new modern infrastructure. Achieving high shares of renewables 
in the energy mix would require electricity systems that can balance variable renewable sources with firm 
power. We explored how these additional costs are factored into existing analysis and found that an 
overwhelming majority of the papers do not discuss the cost of the transition. Only 4% of the papers go 
beyond the cost of the energy technology to discuss the comprehensive system cost of the energy 
transition.  

 
4.4.Technology Options in Modeling Energy Transition in Africa  

Different policy reports, including those from the IRENA (2022), IEA (2022), and Skea et al. 
(2022), have identified key energy technologies that are expected to play vital roles in the low-carbon 
transition. Those technologies include a variety of renewable energy sources (wind, solar, biomass, hydro, 
geothermal), as well as nuclear energy, hydrogen and fossil fuel sources equipped with carbon capture 
and storage (CCS). In this section, we discuss the extent to which studies focusing on energy transition in 
Africa take these various technology options into account. For the most ignored energy technologies, we 
analyze the geographical distribution and compare it with the potential of the country to develop that 
specific energy technology. Figure 6 displays the share of papers that consider each of the energy 
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technologies. This distribution shows that, generally, there are key technologies that are least considered 
in energy transition modeling for Africa: CCS, hydrogen, and some firm low-carbon energy technologies 
(i.e., Nuclear, geothermal, and biogas). These technologies are not widely considered, factoring into fewer 
than 30% of the papers. Renewable energy sources like wind, solar, and hydro are the most considered 
energy technologies. In addition, over 1 in 10 papers restricted the technology options to only renewable 
energy.  

 
Figure 6: Distribution of energy technologies considered in the scenarios 

 
Note: (i) Hydro: Among papers that consider hydro, 45% do not specify the types of Hydro, while 55% differentiate the 
hydro energy technologies (with 46%, 39%, 19% and 2% consider small hydro, large hydro, pumped hydro and hydro 
import, respectively). (ii) CCS: any of the papers does not consider carbon utilization.   
 

Several scenarios that generally focus on mitigation policies and targets often push for the 
complete phaseout of fossil fuels use in favor of renewable energy and clean energy sources. To some 
extent, there is also consideration of using some fossil fuels (gas, for instance) equipped with CCS, at least 
for a transition period. However, it remains challenging to replace the conventional firm energy sources 
with only variable and intermittent sources. Geothermal energy and hydro technology are good candidates 
to provide a firm source to back up variable renewable energy but are limited to country-specific resource 
availability. Nuclear energy, with a potentially high development of both small modular and advanced 
reactors, is another firm low-carbon energy source that can be deployed together with renewable energy. 
Despite the push against fossil, our review shows that most papers (between 53% and 61%) that focus on 
energy transition modeling in Africa feature fossil fuels (namely oil, gas, and coal) in the transition 
pathway, However, we find that despite the important role nuclear energy is expected to play in the low-
carbon transition, it is the least considered technology among the conventional firm energy sources, with 
only three in ten papers having explored nuclear technology. 

This nuclear technology restriction in Africa may be the result of its currently low nuclear energy 
capacity. Only one African country (South Africa) among the thirty-two countries assessed had an 
operating nuclear reactor. On the one hand, Figure 7 shows that nuclear technology is currently being 
considered in countries with larger economies (including Nigeria, Kenya, Ghana, Ethiopia). On the other 
hand, Figure 7 also shows that some African countries may be ready to deploy advanced nuclear 
technology by 2030 (for example, Mozambique, Morocco, Algeria, Sudan, and Rwanda). Meanwhile, 
studies on those individual African countries do not consider nuclear energy technology. Thus, the papers 
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focusing on individual African countries do not fully account for their nuclear potential and may miss the 
opportunity to address the implications of including advanced nuclear in the energy mix of those countries.  

 

Figure 7: Distribution of nuclear technology consideration across individual country and its nuclear potential  

 
Notes: We use the nuclear readiness provided in Lovering et al. (2021) that covers the country’s relative preparedness and motivation for 
developing advanced nuclear power and includes internal institutions and controls such as policy and regulatory agencies, as well as external 
signals of interest such as engagement with supplier countries and international institutions like the International Atomic Energy Agency. 
Note that this readiness index does not include the electricity demand projection. The legend is the following: (4) Ready by 2030, (3) 
Potentially ready by 2030, likely ready by 2050, (2) Not ready by 2030, potentially by 2050, (1) Not ready 2030, Unlikely ready by 2050, (0) 
Conflict zone or internationally sanctioned. 

 
On the renewables side, Figure 6 shows that solar and wind, are the most predominant carbon-free 

technologies (65% and 77%) considered in the papers, while wave and tidal energies are the least covered 
(3% -4%). As firm energy sources, hydro is included more often than geothermal (more than twice as 
often). The geothermal technology restriction is like that of the nuclear technology, given the country 
specifics. Only 29% of papers consider geothermal energy technology, restricting the geographical focus 
mostly to Kenya and Ethiopia. But the East African Rift has one of the highest geothermal energy 
potentials in the world, covering countries like Kenya, Ethiopia, Tanzania, Uganda and Rwanda. Also, the 
other regions (Algeria in Northern Africa) have significant potential for geothermal energy (see Elbarbary 
et al. (2022)). However, only Kenya and Ethiopia have existing installed geothermal power plants, which 
are operational only in Kenya (IRENA, 2020a). This may explain why papers that considered geothermal 
technology only focused on these two countries.  

Unsurprisingly, marine energy technologies (wave and tidal) were the least considered renewable 
energy technologies, with just a single paper focusing on tidal energy in Ghana. Even though some African 
countries have the potential to use marine energy (see AfDB (2021)), the large deployment of this 
technology is still constrained by the relatively high upfront costs, lack of adequate infrastructure, large 
investments requirement, and technology immaturity and performance (Skea et al., 2022). According to 
IRENA (2020b), wave energy is abundant and predictable, and has a global theoretical potential that is 
large enough to meet all global energy demand.  A number of countries including the United Kingdom, 
Canada, Australia, China and Denmark have deployed advanced marine projects at the demonstration and 
small commercial stages (IEA, 2021). However, there is a need to implement adequate policy supports 
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directed to innovation for a large deployment of marine energy technologies globally, and specifically in 
African countries.   

We also analyze carbon capture and hydrogen technologies, even though the two technologies are 
not widely used at scale yet (Bouckaert et al., 2021). As previously discussed, more innovation is still 
needed to commercialize these technologies and deploy them at scale. Figure 8 describes the carbon 
storage potential in Africa and the distribution of carbon capture and storage consideration across 
individual African countries. The figure confirms that the continent is not ready yet to implement carbon 
capture technologies at a large scale22. Our review also shows that papers give only minor considerations 
to hydrogen (4%) and carbon capture (8%) technologies. Hydrogen is only explored in Nigeria and Chad 
in standalone country studies, while carbon capture technology is explored in standalone country studies 
on South Africa, Nigeria, Egypt, and Madagascar- mainly higher-polluting countries. Nevertheless, some 
African countries like Algeria, Morocco, and Mozambique have prospective potential in carbon storage 
as shown in Figure 8, and warrant further consideration.  
 
Figure 8: Distribution of papers by CCS technology inclusion and carbon storage potential  

 
Notes: The Carbon storage readiness is based on Consoli (2018). “0” for the score means “not reviewed”. 

 
4.5. Research and Intellectual Leadership on Energy Transition in Africa 

In this section, we discuss the intellectual leadership and some important drivers of the research 
on energy transition modeling in Africa. First, we describe the status of the research with some selected 
indicators on the authorship that highlight the general overview of the papers that we review. Second, we 
discuss who and what drives intellectual leadership and whether this matters or does not. More precisely, 
we analyze the profile of the authors involved in the papers and the focus of the papers with respect to 
who drives the intellectual leadership.  

 
4.5.1. State of Energy Transition Research on Africa 
 
Table 4 shows an overview of energy transition research authorship with a summary statistics on 

papers and authors. The first group of indicators are specific to the authors and includes the number of 

 
22 Consoli (2018) refers to a large-scale deployment for a carbon storage project that has an annual injection rate of a million 
tonnes or greater. Most of the twelve leading nations in carbon storage are OECD countries, except China, Brazil, United 
Arab Emirates, and Saudi Arabia. 
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authors involved in the paper, the author’s citations (namely, the average and most cited co-author) and 
the rank of the author’s affiliation (i.e., average, and most ranked co-author’s affiliation). On average, 
three researchers are involved in a paper, which also corresponds to the median, confirming the low 
dispersion of the number of authors (i.e., standard variation of 1). On the contrary, the distribution of the 
author’s citations is highly dispersed and skewed to the right. More precisely, the median of the author’s 
citation (1305) and the most cited authors (2427) are much lower than their average (2795 and 6034, 
respectively), showing a high standard deviation of 4549 and 11438, respectively. This illustrates the fact 
that authors with low citations are more frequent than authors that are highly cited. Moreover, the rank of 
the author’s affiliation has a similar distribution with a high dispersion and skewed to the right.  

The second group of indicators relate to characteristics of the paper itself, namely the impact factor 
of the journal in which the paper is published and two indicators of paper citations: the annual scientific 
citation and the policy citation (citation in IPCC reports). The papers that we review are published in 
journals that have an average impact factor of 7, which is close to the median of 6 and to the impact factor 
of some field journals like climate change, climate policy, ecological economics, and energy policy. This 
indicates that energy transition modeling in Africa has attracted field journals with high impact factors. 
Furthermore, on average, the papers have been annually cited eight times compared to the median of five 
annual citations. This shows that papers with high annual citation are less frequent in the sample. In 
addition to scientific citations, we also explore policy citations by searching the papers in our sample that 
are cited in IPCC reports. We find that only 13% of the papers in our sample are cited in IPCC reports.  

 
Table 4: Paper and authors’ summary statistics  

 Average Percentiles 
10% 50% 90% 

Number of authors 3 
(1) 

2 3 5 

Author’s citations   2795  
(4549) 

176 1305 5697 

Citations of the most cited Author 6034 
(11438) 

248 2427 11375 

Rank of the Author’s affiliation  30 
(25) 

4 24 72 

Rank of the most ranked Author’s affiliation 24 
(24) 

1 15 60 

Journal impact factor 7.05 
(7.48) 

2.33 6.14 9.75 

Annual paper’s citations 8.46 
(9.07) 

1 5.42 20.5 

Percentage of papers cited in IPCC reports 13% 
(34%) 

- - - 

               Note: Numbers in “()” are standard deviation. 
 

4.5.2. Drivers and Relevance of Intellectual Leadership  
 

This section first discusses the characteristics of the researchers involved in energy transition 
modeling in Africa. We examine the geographical affiliation of authors who are driving intellectual 
leadership and explore whether the general overview described in Section 4.5.1 changes in any way. 
Second, we analyze the focus of the papers with respect to who drives the intellectual leadership and 
discuss if there is any influence related to the intellectual leadership and whether it matters or does not 
that a category of researchers leads the production of knowledge.   
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4.5.2.1. Authors’ Profile and Institutions  
 

The first characteristic of interest is the geographical affiliation of the researchers involved in the 
papers. We consider three categories of researchers: papers written by (i) only Africa-based authors, (ii) 
only non-Africa-based authors, or (iii) collaboration with Africa-based authors. The distribution of the 
papers in Table 8 shows that 63% of the papers do not have an African-based author. For the remaining 
37% of papers that includes at least an Africa-based researcher, a meaningful number of papers (25%) are 
authored only by Africa-based researchers and 12% of papers are a collaboration between Africa-based 
and non-Africa-based researchers. This is an indication that energy transition research on Africa is 
dominated by researchers based outside of the continent. The North-South partnership to promote research 
and knowledge transfer to Africa does not appear to be prominent given the small number of papers that 
are published from such collaboration. This discrepancy in knowledge generation on energy transition in 
Africa is in line with the general gap that exists in research capacity between SSA and the rest of the 
world, as the research output in the continent is less than 1% of that of the world (Blom et al., 2015). One 
of the main reasons that support this gap is the inability to provide enough funding for research and 
development (R&D) in SSA. In fact, SSA is the second region that has the lowest R&D expenditure after 
the Central Asia, both in terms of the share of global R&D expenditure (i.e., 0.7%) and the percentage of 
GDP (i.e., 0.38%) (UNESCO, 2020). Therefore, policy actions toward a better allocation of resources to 
R&D will be important to reduce this gap, limit the phenomenon known as “brain drain” and make it more 
attractive for African researchers to center their research agenda on the main challenges in Africa, 
including energy transition modeling.  

For the rest of this section, we discuss whether the profile of the researchers and the potential 
influence of the papers are different depending on whether the paper is produced by Africa-based 
researchers or not (see Table 8). On average, the Africa-based papers have one author fewer than the non-
Africa-based papers. For the papers that involve collaboration, only one Africa-based researcher 
collaborates with three non-Africa-based researchers on average. Regarding the author’s citation and the 
rank of their affiliation, the difference is at least twice in favor of non-Africa-based researchers. More 
precisely, on average the citation of papers that do not involve any Africa-based researchers is 286% 
higher than it is for papers published by only Africa-based researchers. The cumulative distribution of 
each category of the researchers also confirms the dominance of non-Africa-based researchers at all levels 
of the author’s citation. This is even more pronounced when considering the most cited authors, with a 
difference of as much as four times. Thus, non-Africa-based top researchers are less likely to be involved 
in papers with Africa-based researchers. The result is similar if we consider the rank of the author’s 
affiliation given that Africa-based institutions are generally lower ranked. 

For the influence of the paper, we find a much more moderate difference. On average, papers with 
no Africa-based authors are published in higher-ranked journals less than twice as often as papers that 
include only Africa-based authors are. Even though papers with Africa-based authors are less likely to be 
published in highly ranked journals and involve top researchers, we find that the difference in the annual 
citation of the paper is rather modest. This indicates that the interest of the scientific community in those 
papers goes beyond the profile of the researchers that publish the papers. However, we note that the most 
annually cited paper (i.e., 53 citations) is a paper that involves only Africa-based authors.  

Contrary to the scientific citations, we find that policy citation (i.e., references cited in IPCC 
reports) is disproportionately dominated by papers produced by researchers based outside of Africa.  

Table 8 also shows that three out of four papers cited in IPCC reports are published by only non-
Africa-based researchers. Papers with only Africa-based researchers and those published in collaboration 
with Africa-based researchers account for only 10% and 15% respectively. Thus, considering policy 
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influence, the share of papers on Africa involving an Africa-based researcher and cited in the IPCC reports 
represents only 3% of all papers produced on Africa (compared to about 10% for papers not involving any 
Africa-based author). The fact that Africa-based researchers are less cited and less known in both the 
international policy and scientific circles may explain why their intellectual contributions are under-
represented in international policy reports. Also, note that papers with high policy influence have higher 
international exposure, thus higher (i) annual citations and (ii) journal impact factor where the paper is 
published, and (iii) citations of the most cited author. We also investigate whether intellectual leadership 
has influence on the recent growing interest in energy transition modeling on Africa. In general, the non-
Africa-based researchers publish more papers than Africa-based researchers per year (see Figure 11 in the 
appendix 7.2). 
 

4.5.2.2. Differences and Similarities by Authors’ Geographical Location 
 

The previous section provides evidence that researchers based outside of Africa dominate energy 
transition modeling research on Africa. Whether this matters or not would depend on the polarization of 
the focus of the paper in different dimensions. We investigated whether a category of researchers tend to 
focus more on specific countries or regions than the others. We also explored the implications for the 
profile of the authors and the influence of their papers given the geographical coverage. We further 
considered other key dimensions that we have discussed in previous sections such as economic 
development considerations, numbers and horizon of the scenarios, energy technologies restrictions, etc. 
 

Types of Papers by Authors’ Geographical Location 
Figure 9 describes the geographical focus of the papers within each category of the author’s 

geographical affiliation. It shows that papers with Africa-based authors mostly focus on individual African 
countries. More precisely, Africa-based researchers are 30 percentage point more likely to work on 
country-specific research than non-Africa-based researchers are. We also found that despite the limited 
collaboration with Africa-based researchers, collaboration is absent for studies that go beyond Africa. 
Furthermore, we assessed the proportion of papers with no-Africa-based authors for each type of 
geographical focus. For individual country focus, this proportion was only 51%, while it was 69% when 
the focus was on the entire continent exclusively and 100% when it went beyond the continent. This 
highlights the fact that papers with no Africa-based authors tend to cover the entire continent as one unit. 
The fact that Africa-based researchers are more knowledgeable of the context in individual African 
countries may explain why their contribution is more frequent for standalone country studies. The 
implication is that some important country-specific characteristics and challenges related to the 
implementation of energy transition policies are less likely to be addressed in studies with no Africa-based 
researchers. This creates a potential bias in cases where those papers involve highly influential researchers 
and have a high scientific and policy influence.  

 
 
 

 
Figure 9: Geographical coverage by authors’ location 

No Africa-based (63%) 
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To confirm this, we further analyzed the profile of authors and the influence of their papers 
depending on their geographical focus. We found that more cited researchers and those from better ranked 
institutions have a tendency to work less on papers that focus on individual African countries (see Table 
5). Regarding scientific influence, papers that went beyond individual African countries were more 
frequently cited (at least twice) than papers that focused on individual countries (See Table 5). However, 
the results for the impact factor of the journal where the paper is published are contrasted. More precisely, 
Table 5 shows that papers with individual country focus and those that include Africa as a region are 
published in journals that are equivalent, while the impact factor of the journal is much higher for papers 
that exclusively focus on the whole continent or multiple African countries.  

Overall, our results show that it matters how papers consider regions and countries when research 
in energy transition modeling on Africa is dominated by researchers who are based outside of the 
continent. 
 
Table 5: Distribution of papers by the geographical focus 

Note: Numbers in “()” are standard deviation. Number in “[]” is the average number of Africa-based authors that collaborate with non-
Africa-based authors. : The sample of IPCC reports includes round 5, round 6 and all special reports. 
 
 
 
 

Development, Scenarios, and Technologies Restrictions by Authors’ Attributes 

Share of papers  Multiple African 
countries exclusively 

One African 
country only 

Includes selected 
African countries 

Africa region 
exclusively  

Includes 
Africa region 

Author’ information  
Average Author’s citations  

 2025 2032 5037 3428 
 
7199 

Average citations of the most cited 
Author 3957 4235 12186 7895 

13741 

Average rank of the Author’s affiliation  
26 33 26 27 

 
16 

Average rank of the most ranked 
Author’s affiliation 36 41 27 32 

 
17 

Paper’s information  
Average journal impact factor 11 6 7 9 6 
Average of annual paper’s citations 6 6 12 13 16 

All Africa-based (25%) Collaboration with Africa-based (12%) 
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In addition to the geographical coverage, we investigated additional dimensions that the 
intellectual leadership outside Africa may potentially influence. For the scenarios, we analyzed the furthest 
time horizon considered in the paper, the discussion of the intermediate results along the transition path, 
and the average number of scenarios (see Table 8). The results show generally few post-2050 scenarios 
regardless of the authors’ geographical affiliation. Nevertheless, papers with only Africa-based authors 
are more oriented to Sustainable Development Goals (SDG) (i.e., 2030) while papers with no-Africa-
based authors have more consideration for net-zero emissions targets (i.e., 2050). Moreover, papers 
published in collaboration are more likely to consider the specific AU agenda of 2063 (13%) than papers 
with only Africa-based researchers (3%) or no Africa-based author (6%). We also found that discussion 
of the transition path is less frequent in papers with only Africa-based researchers (24%) than papers that 
do not involve Africa-based authors (42%). However, we did not find any difference in the number of 
scenarios included in the papers.  

Table 8 also highlights two different aspects of development consideration in the papers: the 
objectives of the papers and their implications. The results show that the authors’ attributes do not correlate 
with the frequency of papers analyzing development outcomes. We also found similar results for energy 
technologies, except for energy technologies that are less frequently considered (see Table 8). Papers with 
no-Africa-based researchers consider key energy technologies like nuclear, geothermal, CCS and 
hydrogen more frequently, than papers with only Africa-based authors.  
   

IPCC Citations and Policy Influence 
Energy transition issues are key concerns in the global discussion on climate change. Several 

considerations, including climate geopolitics and scientific evidence, can potentially influence those 
international climate discussions and related decisions. Therefore, in the context of energy transition 
modeling on Africa, it is important to analyze the characteristics of papers and researchers that have a 
potential to influence both the scientific community and policymakers. For the authors’ profiles, we 
selected the most cited authors in our sample with citations higher than 10,000. We considered the top 10 
most cited papers and citations in IPCC reports as indicators of the potential high influence of the papers.  
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Table 9 shows that all the fifteen most cited authors are not based in Africa and only one of them 

has published a paper in collaboration with Africa-based researchers. We also found that none of them 
has contributed to a paper that considers development as an outcome of interest. Nevertheless, we did not 
find significant differences when it came to the geographical focus or the horizon of the scenarios. Nearly 
half of those papers focus on individual African countries (Mostly Kenya and Nigeria) and the 
considerations of transition towards SDGs and net-zero emissions targets are quite equivalent.  

With respect to the papers’ influence, Table 7 emphasizes some differences in terms of the 
geographical affiliation of the authors involved in the most cited papers. 55% of the papers were written 
with no-Africa-based authors while 45% of the papers included at least one Africa-based researcher 
(including 9% for collaboration). We also found that those papers are similarly oriented toward 2030 and 
2050 targets and only one paper considers economic development objectives. However, those papers tend 
to focus more on the continent as a unit than on individual African countries (representing only 18% 
against almost 50% for Africa exclusively). On policy influence, Table 6 shows that most of the papers 
cited in IPCC reports focus on 2050 targets while the consideration of 2030 and 2050 targets are equally 
prominent in papers not cited in IPCC reports. The focus on individual African countries is more frequent 
(i.e., 62%) in papers not cited in IPCC reports than papers cited (i.e., 30%). Moreover, higher proportions 
of papers cited in IPCC reports consider economic development and discussion of the transition path than 
papers not cited. Also note that paper’s citation in IPCC reports does not translate into papers’ scientific 

Rank of 
citations 

Number of 
Citations 

Number 
of papers 

Africa-based 
Author 

Collaboration 
with Africa-
based Authors 

Geographical 
coverage Furthest horizon  

Development 
as outcome 
of interest  

1st  93878 1 No No 
Includes 
South Africa 2030 No 

2nd  79900 1 No No 
Africa Region 
exclusively 2050 No 

3rd 35984 2 No No 
Includes 
Africa Region 2050 No 

4th 27340 2 No No Kenya 2035 No 
5th 22878 2 No No Egypt 2050 No 
6th 22624 1 No No Kenya 2020 No 
7th 20150 1 No No Sierra Leone - No 

8th 19414 1 No No 
Includes 
Africa Region 2050 No 

9th 18439 1 No No 
Africa Region 
exclusively 2100 No 

10th 17607 1 No No Nigeria 2030 No 

11th 15742 1 No Yes 
Africa Region 
exclusively 2030 No 

12th 13283 1 No No Kenya 2020 No 

13th 11902 1 No No 
Africa Region 
exclusively 2030 No 

14th 11375 9 No No 
Including 
Ethiopia 2050 No 

15th 10130 1 No No Nigeria 2040 No 
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citation and citation of researchers involved in the paper.  We found that those papers include fewer top 
researchers and highly cited papers than the latter.  

Overall, we found that the influence of the authors and their papers (both scientific and policy) 
matters for the development consideration in the paper. Author citation is linked to the geographical 
affiliation of the authors while the paper citations matter for the geographical focus of the papers. 
Moreover, citations in IPCC reports are linked with the time horizon of the scenarios in the papers.  
 
Table 6: Characteristics of papers in the final sample by IPCC citation status 

  Cited  Not Cited 
Annual number of citations 14 

(10) 
8 
(9) 

Average of journal impact factor 10.04 
(12.93) 

6.62 
(6.32) 

Average citations of the most cited author 10447 
(18467) 

5370 
(9908) 

 
 
 

Furthest horizon 

Up to 2030 30% 49% 
2031-2050 55% 45% 
2051-2063 5% 0% 
Beyond 2063 10% 6% 

 
 

 
Geographical coverage 

Africa Region exclusively 40% 18% 
Includes Africa Region 15% 3% 
Multiple African countries exclusively 10% 9% 
One African country only 30% 62% 
Includes selected African countries 5% 9% 

Consideration of development objective 15% 9% 
Discussion of pathways 60% 33% 
Top10 most cited paper 27% 73% 
Most cited Authors 33% 66% 

             Note: Standard deviations in parentheses 
 
 
 
Table 7: Distribution of the top 10 annually most cited papers 

Note: “in”= Only Africa-based Authors; “out”= No Africa-based Authors; “both”= Collaboration with Africa-based Authors 
 
 

Rank of 
citations 

Number of 
annual Citations 

Geographical 
affiliation of Authors  Geographical coverage 

Furthest 
horizon  

Development as 
outcome of interest  

1st  53 in Africa Region exclusively - No 
2nd  48 out Includes Africa Region 2050 No 
3rd 43 out Includes Ethiopia 2050 No 
4th 37 out Africa Region exclusively 2030 No 

5th 30 out 

Includes Benin, Angola, Democratic Republic of 
Congo, Ethiopia, Niger, Cameroon, Mozambique, 
Republic of Congo, Botswana, Cote d’Ivoire, 
Senegal, Tanzania, Ghana, Togo, Zimbabwe, 
Gabon, Kenya, Mauritius, Nigeria, Namibia, 
Sudan, South Africa, Zambia - - 

6th 29 in Algeria 2030 No 
6th ex 29 both Africa Region exclusively 2030 No 
8th 27 out Includes Africa Region 2052 Yes 
9th 26 out Africa Region exclusively 2030 No 
10th 24 in Africa Region exclusively 2040 No 
10th ex 24 in Tunisia 2030 No 
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Table 8: Distribution of papers by the geographical affiliation of the authors 

Share of papers  Full 
sample 

All Authors are 
Africa-based 

Collaboration with 
Africa-based Author 

No Africa-based 
Author 

General trends 
Percentage 100% 25% 12% 63% 
Number of papers 156 39 19 98 
Average number of authors 3  

(1) 
2 
(1) 

4 [1] 
(1) 

3 
(1) 

Author’ information 
Average Author’s citations   2795 

(4549) 
1247 
(1709) 

1743 
(1824) 

3592 
(5410) 

Average citations of the most cited Author 6034 
(11438) 

1997 
(2282) 

3963 
(4372) 

7979 
(13808) 

Average rank of the Author’s affiliation  30 
(25) 

47 
(26) 

38 
(19) 

22 
(22) 

Average rank of the most ranked Author’s affiliation 24 
(24) 

39 
(28) 

19 
(15) 

19 
(22) 

Paper’s information 
Average journal impact factor 7.05 

(7.48) 
5.55 
(3.41) 

4.93 
(3.11) 

8.03 
(8.93) 

Average of annual paper’s citations 8.46 
(9.07) 

8.17 
(10.40) 

8.23 
(7.51) 

8.62 
(8.87) 

Citation in IPCC reports 13% 10% 15% 75% 
Furthest horizon 

Up to 2030 46.40% 61% 47% 41% 
2031-2050 46.2% 35% 40% 52% 
2051-2063 1% 0 0 1% 
Beyond 2063 6% 3% 13% 6% 

Number of scenarios and Discussion of the transition path 
Yes 36% 24% 29% 42% 
Average number of scenarios 3.91 

(2.92) 
3.83 
(2.95) 

4.13 
(1.77) 

3.90 
(3.08) 

Considerations of pathways  
Energy 90% 86% 83% 93% 
Emissions 59% 57% 67% 59% 
Development 10% 9% 6% 12% 
Energy-emissions 58% 57% 67% 57% 
Energy-Emissions-development 7% 6% 6% 7% 

Discussion of development implications 
Yes 39.74% 41.03% 42.11% 38.78% 

Energy technologies considerations 
Solar 77% 69% 89% 78% 
Hydro 66% 64% 58% 68% 
Wind 65% 54% 74% 68% 
Gas 61% 54% 47% 66% 
Oil 58% 49% 42% 64% 
Coal 53% 54% 37% 55% 
Nuclear 29% 21% 26% 34% 
Geothermal 29% 15% 11% 38% 
CCS 8% 3% 0% 12% 
Biogas 6% 3% 5% 8% 
Hydrogen 4% 0% 16% 3% 
Wave 4% 3% 5% 4% 
Tidal 3% 3% 0% 3% 
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Note: Numbers in “()” are standard deviation. Number in “[]” is the average number of Africa-based authors that collaborate with non-
Africa-based authors. The sample of IPCC reports includes round 5, round 6 and all special reports.
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Table 9: Distribution of the most cited authors 

 
Note: The most cited Authors with citations higher than 10,000. We report the geographical coverage of the most annually cited paper 
when multiple papers.

Rank of 
citations 

Number of 
Citations 

Number 
of papers 

Africa-based 
Author 

Collaboration 
with Africa-
based Authors 

Geographical 
coverage Furthest horizon  

Development 
as outcome 
of interest  

1st  93878 1 No No 
Includes 
South Africa 2030 No 

2nd  79900 1 No No 
Africa Region 
exclusively 2050 No 

3rd 35984 2 No No 
Includes 
Africa Region 2050 No 

4th 27340 2 No No Kenya 2035 No 
5th 22878 2 No No Egypt 2050 No 
6th 22624 1 No No Kenya 2020 No 
7th 20150 1 No No Sierra Leone - No 

8th 19414 1 No No 
Includes 
Africa Region 2050 No 

9th 18439 1 No No 
Africa Region 
exclusively 2100 No 

10th 17607 1 No No Nigeria 2030 No 

11th 15742 1 No Yes 
Africa Region 
exclusively 2030 No 

12th 13283 1 No No Kenya 2020 No 

13th 11902 1 No No 
Africa Region 
exclusively 2030 No 

14th 11375 9 No No 
Including 
Ethiopia 2050 No 

15th 10130 1 No No Nigeria 2040 No 
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5. Conclusion and Recommendations 

The rapid growth of energy transition modeling research on African countries is a much-welcomed 
development for at least two reasons. First, it is vital to inform policy about the continent’s position on 
climate action on the global stage. It is also essential to help develop experience and capacity in research 
and policy formulation in this space across the continent. This review sheds light on the patterns emerging 
from the literature, some of which can inform future research or guide policy in the short and medium 
term. Energy transition research must be supported and expanded on the continent as nearly half of the 
countries on the continent lack any study that can inform policy. Additionally, even for countries covered 
by studies in our sample, there is a dearth of knowledge at the country level. This can impede a 
comprehensive approach to thinking about the countries’ climate actions. 

At the granular level, more flexibility and a more comprehensive range of scenarios are often 
needed to account for the complexities and diversity of the assumptions necessary to obtain a more 
comprehensive picture of the options available. In addition, more focus on pathways and less emphasis 
on endpoints would most likely create more useful information for policy formulation and government 
action. There is also the need to consider scenarios with much higher energy consumption for the 
continent.  

We also found that intellectual leadership is disproportionately skewed toward scholars that are 
based outside of Africa, which is likely reflective of resource commitments and the source of research 
funding. Consequently, African governments and international donors should commit to supporting local 
researchers and developing local capacity to inform and further enrich this space going forward.  

For effective long term policy formulation, the energy transition modeling space must be 
considered in terms of programs rather than projects. The individual papers provide helpful information 
as a snapshot, but meaningful long-term sustained climate action also requires long-term sustained 
research that adjusts to changing conditions over time. Such options can be achieved more effectively 
with local institutions, by establishing new entities or by reinforcing the existing ones.  

Finally, regarding the central objective of the paper to investigate the nexus between energy, 
climate, and development, much is left to be done in the literature. Energy transitions research has to a 
large extent been siloed from considerations of development imperatives. A framework to integrate these 
two considerations in a meaningful way is needed but may pose some complexity and difficulties in the 
modeling exercises. Some of the complexity could be lessened by treating energy as a necessary but 
insufficient input for economic growth. Consequently, we need to consider the extent to which energy is 
a binding constraint to economic growth, to inform the buildup of energy systems in the short and medium 
terms, especially when financial resources are scarce. Figure 10 provides a basic illustration of such a 
possible framework.  

 
Figure 10: Possible Framework of energy transition in SSA
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Bringing development considerations into energy transition efforts can ensure that energy does not 
become a binding constraint to development. In the chart, (1) reflects that the fundamentals of the country 
determine its economic potential. The economic potential can be determined by the highest economic 
outcomes achieved by a country with similar fundamentals. In (2), economic potential is in turn used to 
determine the energy demand to be inputted in the model (thus giving a buffer that makes energy unlikely 
to become a binding constraint to growth). In (3), the fundamentals of the economy also determines the 
energy supply potential – considerations of some power trade can be included here.  In (4), energy demand 
may exceed supply, but this is unlikely given the determination of the supply potential. In (5), the 
outcomes from the model include economic growth, emissions, and the energy mix. Some outputs may 
influence the energy supply, for instance the introduction of a carbon price or new emissions reduction 
targets. In (6), as the economy grows, it feeds back into stronger fundamentals (greater access to capital, 
higher skills, better capacity to adopt more advanced technologies, including in the energy sector, etc.).  

For poorer countries, climate is a development issue and development is a climate issue. The dual 
challenge of economic development and climate change calls for more multidisciplinary, collaborative 
research to address the two issues within the same framework.  
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7. Appendix 

7.1. Significance of correlations with regression 

We regress the share of the papers on each of the proxies that we use for the country size to check 
whether the correlations are significant. The results show that correlations with GDP and population are 
high and significant1 while that of the CO2 emissions per capita are moderate and significant2. The 
correlation with the electricity consumption per capita and that of the CO2 emissions is low and 
significant3. We do not find a significant correlation between country coverage and GDP per capita. 
 

7.2. Additional figures and tables  
 

 Figure 11:Distribution over years of the number of papers by the geographical affiliation of the authors 

 

 
 

 
 

7.3. List of papers included in the analysis.  
 

ID References 
2 Ali, M. M. M., & Yu, Q. (2021). Assessment of the impact of renewable energy 

policy on sustainable energy for all in West Africa. Renewable Energy, 180, 544-551. 

 
1 The coefficients of regression are respectively, 0.95*** and 0.81***, with “***” corresponding to 1% for the degree of 
significance.  
2 The coefficient of regression is 0.50*, with “*” corresponding to 10% for the degree of significance. 
3 The coefficients of regression are 0.0008* and 0.00004***, respectively, with “*” and “***” corresponding to 10% and 1% 
for the degree of significance, respectively. 
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7.4. Details on the methodology 

 
7.3.1. Example of search: Scopus 

 
TITLE-ABS-KEY(ssa OR  africa* OR  Nigeria OR  Ethiopia OR  congo* OR "Democratic 
Republic of the Congo" OR  Egypt OR  "South Africa" OR  Tanzania OR  Kenya OR  Uganda 
OR  Algeria OR  Sudan OR  Morocco OR  Mozambique OR  Ghana OR  Angola OR  Somalia 
OR  "Ivory Coast" OR  Madagascar OR  Cameroon OR  "Burkina Faso" OR  Niger OR  Malawi 
OR  Zambia OR  Mali OR  Senegal OR  Zimbabwe OR  Chad OR  Tunisia OR  Guinea 
OR  Rwanda OR  Benin OR  Burundi OR  "South Sudan" OR  Eritrea OR  "Sierra Leone" 
OR  Togo OR  Libya OR  "Central African Republic" OR  Mauritania OR  "Republic of the 
Congo" OR   Liberia OR  Namibia OR  Botswana OR  Lesotho OR  Gambia OR  Gabon 
OR  "Guinea-Bissau" OR  Mauritius OR  "Equatorial Guinea" OR  Eswatini OR  Swaziland 
OR  Djibouti OR  Comoros OR  "Cape Verde" OR  "São Tomé and Príncipe" OR  Seychelles) 
AND ("Energy transition"* OR "Low carbon transition"* OR decarboni* OR "Energy pathway"* 
OR "Low carbon pathway"*  OR "Net-zero"*) AND  (model* OR scenario*) PUBYEAR > 
1999 
 

7.3.2. Data Extraction Template in Covidence 

General Information 
1-ID number 
Identification number from Covidence 
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Authorship 
2-Author 1 affiliation 
Document the author affiliation. In case there are multiple affiliations, use the African-based affiliation 
or the first listed if none in Africa. 
 
3-Author 2 affiliation 
Document the author affiliation. In case there are multiple affiliations, use the African-based affiliation 
or the first listed if none in Africa. 
 
4-Author 3 affiliation 
Document the author affiliation. In case there are multiple affiliations, use the African-based affiliation 
or the first listed if none in Africa. 
 
5-Author 4 affiliation 
Document the author affiliation. In case there are multiple affiliations, use the African-based affiliation 
or the first listed if none in Africa. 
 
6-Author 5 affiliation 
Document the author affiliation. In case there are multiple affiliations, use the African-based affiliation 
or the first listed if none in Africa. 

Geographical scope 
7-Geographical scope 
Geographical scope 

1. Africa Region exclusively 
2. Includes Africa Region 
3. Multiple African countries exclusively 
4. One African country only 
5. Includes selected African countries 

 
8-List of African subregions or countries covered 
 
9-Economic development implications 
Are the development objectives explicitly discussed as part of the hypothesis (e.g., Growth, 
Employment or jobs, Poverty, Income)? 

1. Yes 
2. No 

 
10-Economic Assumptions 
What are the economic assumptions used in the model?(e.g., list highest and lowest growth levels) 
 
11-Model classification 
"1-Techno-economic systems: defined by energy flows associated with energy extraction, conversion 
and use processes involved in energy production and consumption as coordinated by energy markets; 
2-Socio-technical systems: delineated by knowledge, practices and networks associated with energy 
technologies; and networks of developers, manufacturers and installers of solar PV panels, maps of shale 



 

 
 

48 

gas locations, patents for electric vehicle batteries, and household practices of using heat pumps or car 
sharing; 
3-Systems of political actions: influencing energy-related policies; 4-Combinaison of previously listed 
systems" 

1. Techno-economic systems 
2. Socio-technical systems 
3. Systems of political actions 
4. Combinaison of previously listed systems 
5. Other 

 
12-Discussion of sociological aspects of energy transition 
Does the paper explicitly discuss sociological aspects? 

1. Yes 
2. No 

 
13-Discussion of political aspects of energy transition 
Does the paper explicitly discuss political aspects? 

1. Yes 
2. No 

 
14-Model approach 
"1-Top-down, 
top-down with endogenous assessment of economic and societal effects (i.e., input-output models, 
econometric models, computable general equilibrium models and system dynamics). The approach 
follows the economic approach, considering macroeconomic relationships and long-term changes 
  
2-Bottom-up, 
Bottom-up with higher technological detail (i.e., partial equilibrium models, optimization models, 
simulation models, multi-agent models). It is an engineering approach, based on detailed technological 
descriptions of the energy system. 
  
3-Hybrid (as a combination of Top-down and Bottom-up), when assessing the integration of variable 
renewables, both long-term changes and technological properties are of high importance. 
  
4- Not relevant, given the model classification" 

1. Top-down 
2. Bottom-up 
3. Hybrid 
4. Not relevant 
5. Other 

 
15-Methodology 
"1- Simulation: the method simulates an energy-system based on specified equations and 
characteristics... often bottom-up models. 
  
2-Agent-based simulation: a specific case of models where actors participating in e.g. the electricity 
market are modelled explicitly as agents with distinct strategies and behaviour. 
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3-Optimisation: optimise a given quantity (system operation or investment, or several aspects 
simultaneously)...Mostly linear programming (LP) approach (max or min), subject to a set of constraints 
(e.g. balancing the supply and demand in the grid)... Mixed-integer linear programming (MILP) forces 
certain variables to be integral, which can be useful when for example optimising how many power 
plants or the number of wind turbines one should invest in... Non-linear, i.e. the objective function or 
constraints are non-linear. Heuristic optimisation models do not necessarily find the optimum solution. 
By simple and fast methods, such as the Covariance Matrix Adaption Evolution Strategy (CMA-ES), the 
optimal solution can be approximated. 
  
4-Equilibrium: An economic approach, modeling the energy sector as a part of the whole economy and 
studies how it relates to the rest of the economy. General equilibrium models, or computable general 
equilibrium models (CGE), consider the whole economy. They determine the equilibrium across all 
markets and determine important economic parameters such as the gross domestic product (GDP) 
endogenously. Partial equilibrium models (PE) focus on balancing one market, in this case the energy or 
electricity market, with the rest of the economy not modelled. 
  
5- Econometrics 
  
6- Machine learning 
  
7-Combinaison of methods" 

1. Simulation 
2. Agent-based simulation 
3. Optimisation 
4. Equilibrium 
5. Combinaison of methods 
6. Econometrics 
7. Machine learning 
8. Other 

 
16-Level of data disaggregation: National 
Does the model use the data at the national (macro) level? 

1. Yes 
2. No 

 
17-Level of data disaggregation: Household 
Does the model use the data at the household (micro) level? 

1. Yes 
2. No 

 
18-Level of data disaggregation: Firms 
Does the model use the data at the firms (micro) level? 

1. Yes 
2. No 

 
19-Level of data disaggregation: Sector 
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Does the model use the data at the sector level? 
1. Yes 
2. No 

 
20-Level of data disaggregation: Subnational 
Does the model use the data at the subnational level? 

1. Yes 
2. No 

 
21-Sources of data 
What are the sources of data used in the model? (Use abbreviation like WDI, IEA, DHS, LSMS, etc.) 
 
22-Energy pathways (mix, demand, supply) 
Do the results or outcomes of interest include "Energy pathways (mix, demand, supply)"? 

1. Yes 
2. No 

 
23-Emissions pathways (CO2 emissions) 
Do the results or outcomes of interest include "Emissions (CO2 emissions)"? 

1. Yes 
2. No 

 
24-Development pathways(Growth, poverty) 
Do the results or outcomes of interest include "Development (Growth, poverty)"? 

1. Yes 
2. No 

 
25-Projection horizon 
What is the time horizon of the projection? 
 
26-Number of scenarios assessed 
What is the number of scenarios considered in the paper? 
 
27-Scenario path details 
Are the pathways provided on the year-by-year basis instead of only for the final year? 

1. Yes 
2. No 

 
28-Discussion of pathways 
Is any point in the pathways discussed other than the end-point? 

1. Yes 
2. No 

 
29-Years of pathways discussed 
What are the points (years) discussed in the pathways other than the end-point? 
 
30-Technology restrictions 
Are the energy technologies restricted ex-ante? 

1. Yes 
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2. No 
 
31-Energy technologies included in the model 
What are the energy technology included in the analysis? (e.g., Wind, solar, nuclear, etc.) 
 
32-Energy technology cost 
Does the model discuss explicitly the energy technology cost? 

1. Yes 
2. No 

 
33-Energy transition cost 
Does the model discuss explicitly the energy transition cost? (e.g., cost in addition to the technology 
cost) 

1. Yes 
2. No 

 
34-Calculation of energy cost 
Does the model use context-related information to calculate the energy technology cost instead of using 
cost assumptions? 

1. Yes 
2. No 

 
35-Cost of energy technology 
What is the cost of the energy technology used in the model? 

7.3.3. Additional Data  
 
 

a) Classification: for each author, provide the following classification based on their affiliation 
 

1- Academic institution within Africa 
2- Academic institution outside Africa 
3- International organization (WB, IMF, UN, OECD, IRENA, IEA) 
4- Regional organizations within Africa (AfDB, ECOWAS, UNECA) 
5- Regional organizations outside Africa (IADB, ADB) 
6- Non-Governmental Organization within Africa 
7- Non-Governmental Organization outside Africa 
8- Public institutions (Ministry, Government Agencies, etc.) 

 
b) For each author, provide the following rank of the institution (using SCIMAGO ranking: 

https://www.scimagoir.com/rankings.php?ranking=Research) based on their affiliation  
 

c) Academic Influence 1: For each of the papers, provide the number of citations (using 
google scholar) 

 
d) Academic Influence 2: For each of the papers, provide the impact factor of the journal 

(provided on the journal website) 
 

e) Academic Influence 3: for author 1, provide the number of citations (using google scholar) 


