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Abstract

This study characterizes the predictive relationship between electricity genera-
tion from climate-related renewable energy (CRE) sources (wind, solar photo-
voltaics, and small-scale run-of-river hydroelectricity) and daily CO2 emissions
in the French power sector over the 2013-2021 period. The results demon-
strate that run-of-river hydroelectricity was the most important source among
the three for predicting emissions, followed by wind energy. Empirical findings
based on a counterfactual analysis also reveal that an increase in the share of
electricity from CRE sources would have been associated with a statistically
significant decrease in predicted emissions over the study period. Identification
of the optimal mix of CRE sources for minimizing predicted emissions under
four counterfactual scenarios of increased CRE production reaffirms the greater
relative share of run-of-river hydroelectricity and wind energy within the mix.
The findings provide fresh quantifiable evidence on the (relative) importance of
CRE sources for carbon emissions reduction in the electricity sector in France.

Keywords: Climate-related Renewable Energy, Carbon Emissions, Electricity
Production, Machine Learning

1. Introduction

Carbon dioxide (CO2) emissions from energy use are one of the principal
contributors to global climate change and represent almost 75% of all anthro-
pogenic greenhouse gas emissions in the European Union (European Commis-
sion, 2021). Such emissions come under the influence of multiple climatic, social
and economic factors, and are mainly rooted in the combustion of fossil fuels
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for electricity production, transportation, industrial and agricultural purposes.
Notwithstanding the fact that all sectors should be held accountable for reduc-
ing CO2 emissions, the electricity sector is expected to play the lead role in the
decarbonization of economy owing to its more pronounced ability to lower emis-
sions in a cost and time-effective manner (Edenhofer, 2015; Rodrigues et al.,
2020; Goh et al., 2018; Karmellos et al., 2016). Development of renewable en-
ergy share of electricity production, leveraging carbon capture and sequestration
(CCS) technologies in power plants, and increasing nuclear energy supply are
three alternative methods for mitigating CO2 emissions in the electricity sector
(Brouwer et al., 2016). Among these options, renewable energy sources have
been argued to be the keystone of CO2 mitigation (Rogelj et al., 2018), not only
from an environmental point of view but also in the light of economic, social
and political considerations (Waisman et al., 2019).

Being a pioneer in the battle against global warming, the European Union
already has a significantly lower emissions intensity of electric power generation
than other large economies such as the United States, Japan, China, India and
Australia (International Energy Agency (IEA), 2020). The French electricity
sector is comparatively even more decarbonized (Shirizadeh & Quirion, 2021),
largely due to the considerable share of nuclear energy generation.1 The 2020
report of the electricity transmission system operator of France2 asserts that,
in 2019, emissions from electricity production in the country reached approxi-
mately 21.16 million tonnes of CO2 equivalent (CO2-eq), accounting for 4.8%
of total emissions (Réseau de Transport d’Électricité (RTE), 2020).

In alignment with France’s carbon neutrality by 2050 objective set by the
National Assembly in 2019 under the title “Ecological Emergency and Climate
Crisis” (Ministère de la Transition écologique, 2019), CO2 emissions from elec-
tricity production need to be further reduced either by retrofitting CCS to ex-
isting power plants, building new nuclear reactors or increasing the share of
renewable electricity (Débat national sur la transition énergétique, 2013; Shi-
rizadeh & Quirion, 2021). Two analyses conducted by the French Environment
and Energy Management Agency (ADEME) have shown that the development
of a new generation of nuclear energy would not be economically efficient for
the French electricity system, and that in an ideal scenario, electricity gener-
ation from renewable sources would constitute the largest share–up to 95%–of
electricity generation in France over the next few decades (see ADEME, 2015,
2018). It is in this regard that the nexus between CO2 emissions in the electric
power sector and various forms of renewable electricity generation needs careful
analysis.

Figure 1 depicts the share of total electric energy produced by main fuel
categories in France from 2013 to 2020. From this figure, two main observations
are clear. First, while the share of the fossil fuel mix (i.e. fuel oil, coal and

1France has the world’s largest share of electricity production by nuclear power, with about
70% of its electricity being generated from nuclear energy (World Nuclear Association, 2022).

2RTE–Réseau de Transport d’Électricité (https://www.rte-france.com/)
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gas in aggregate) in total electricity production has only slightly decreased over
this period (from 7.91% in 2013 to 7.51% in 2020), the shares of total electricity
production from fuel oil and coal have decreased, respectively, from 0.69% and
3.61% in 2013 to 0.34% and 0.28% in 2020. This decrease has been accompanied
by an increase in the share of total electricity production from gas (from 3.61% in
2013 to 6.89% in 2020), indicating a shift in the fossil fuel mix. Second, the share
of the wind-solar-hydroelectric energy mix in total electricity production has
increased from 17.44% in 2013 to 23.55% in 2020. Accompanied by a decrease
in the share of total electricity produced from nuclear energy (from 73.34% in
2013 to 66.99% in 2020), this latter signifies a change in the composition of
non-fossil fuel mix, i.e. a gradual transition from nuclear to wind-solar-hydro
electricity.3
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Figure 1: Share of total electric energy produced by main fuel categories in France from 2013
to 2020 (Data source: https://opendata.reseaux-energies.fr/).

The relationship between CO2 emissions and renewable energy production
and consumption has attracted growing interest from scholars in the fields of en-
vironmental and energy economics. Adopting a range of conventional method-
ological approaches to time series and panel data analysis, numerous studies

3While there is an ongoing dispute over the optimal relative shares of renewable energy
resources and nuclear power in electricity generation in France (Shirizadeh & Quirion, 2021),
the share of electricity generation by nuclear power is to be reduced to 50% by 2035 as per
government policy (World Nuclear Association, 2022).
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have examined this relationship over different time periods and with different
geographical scopes. As suggested by Sharif et al. (2020), existing research in
this area can be broadly categorized into five groups according to their findings:
studies that indicate a unidirectional causality relationship from renewable en-
ergy use to CO2 emissions (Farhani & Shahbaz, 2014; Jaforullah & King, 2015;
Özbuğday & Erbas, 2015; Apergis & Payne, 2015; Long et al., 2015; Bilgili
et al., 2016; Bulut, 2017; Liu et al., 2017b; Khan et al., 2018; Salazar-Núñez
et al., 2021); those arguing that CO2 emissions influence the production and
consumption of renewable energy (Sadorsky, 2009; Menyah & Wolde-Rufael,
2010; Shafiei & Salim, 2014; Leitão, 2014; Jebli & Youssef, 2015; Paramati et al.,
2017); works suggesting a bidirectional causal association between CO2 emis-
sions and the production and consumption of renewable energy (Apergis et al.,
2010; Dogan & Seker, 2016; Dong et al., 2017; Waheed et al., 2018); the ones
that imply no causal link between CO2 emissions and the production and con-
sumption of renewable energy (Qi et al., 2014; Bento & Moutinho, 2016; Jebli
et al., 2016; Saidi & Mbarek, 2016; Boontome et al., 2017; Jebli & Youssef, 2017;
Liu et al., 2017a); and finally studies with mixed or indecisive results on this
relationship (Zeb et al., 2014; Apergis & Payne, 2014; Sebri & Ben-Salha, 2014;
Ang & Su, 2016; Béläıd & Youssef, 2017; Sinha et al., 2018; Adams & Nsiah,
2019; Chen et al., 2019; Sharif et al., 2020; Rodrigues et al., 2020).

All the empirical studies listed above have based their analyses upon annual
data, with the exception of the work of Sharif et al. (2020), which makes use
of monthly data disaggregated from annual series. As emphasized by Adewuyi
& Awodumi (2017), this body of literature remains inconclusive on the topic,
both at single and multi-country levels. Interestingly enough, some studies with
the same geographical scope (i.e. region) and overlapping study periods have
yielded inconsistent results (see for example the works of Sebri & Ben-Salha
(2014), Dong et al. (2017) and Liu et al. (2017b) on BRICS countries). This
highlights the need for the recognition of the specificity of different research
settings, and calls for further investigation into the matter, possibly by means
of more advanced methodologies that are better fitted to answering the question
on the nexus between renewable electricity production and CO2 emissions.

From a methodological point of view, a potential drawback of most exist-
ing empirical studies in this area is the fact that they seek (positive or neg-
ative) causal links between CO2 emissions and renewable energy production
and consumption, while relying on methods and/or measures that are inher-
ently inappropriate for drawing such causal inferences. For instance, commonly
used emissions indicators (like the ones used in the present study; see Section
2.1) are typically estimated by considering the contribution of the combustion
of carbon-based fuels (such as coal, gas and various fuel oil products) to CO2

emissions, and on the assumption that renewable energy sources (also referred
to as clean energy sources) or even biofuels4 create little to no CO2. Hence, the

4See for example the description of CO2 emissions data from the BP Statistical Review of
World Energy (https://www.bp.com/en/global/corporate/energy-economics/statistica

4

https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/using-the-review/methodology.html.html##accordion_carbon)
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/using-the-review/methodology.html.html##accordion_carbon)


change in renewable energy production and consumption cannot necessarily be
considered to be the “cause” of the change in the values of such emissions vari-
ables. Moreover, prior research has often used composite emissions indicators
that may embrace, but are not necessarily limited to emissions from electricity
production (see for example Apergis et al., 2010; Adams & Nsiah, 2019; Dogan
& Seker, 2016). This variable choice could possibly lead to the omitted-variable
bias in statistical models, and question the validity of any causal claim about
the relationship between CO2 emissions and renewable energy production and
consumption.

With reference to the points raised above, it could be argued that most
causal claims in this context can be considered indications of correlation, prece-
dence (Leamer, 1985) or temporal relation (Granger & Newbold, 2014) based
on a set of theoretical assumptions about the data. One way to overcome this
problem of causal interpretation involves the use of advanced predictive mod-
eling techniques to characterize the “predictive impact” (distinguished from
causal impact) of renewable energy production on CO2 emissions. Instead of
attempting to make a theoretically unsupported causal claim, this alternative
approach helps provide answers to questions of great practical importance such
as (1) Given an increase or decrease in renewable energy production, what would
be the predicted change in emissions in the electricity sector? and (2) Under
a higher-renewable-electricity-production scenario, what would be the optimal
share of each source in the the renewable energy mix for minimizing predicted
emissions in the electricity sector? This proposed predictive framework derives
its legitimacy from the fact that an increase in the share of the package of clean
energy sources is expected to result in a decrease in the share of high-carbon
energy sources as main drivers of CO2 emissions.

On another note, while some existing works have considered the effect of spe-
cific types of renewable energy sources like hydroelectricity (Long et al., 2015;
Khan et al., 2018) or wind and solar energies (Qi et al., 2014) on CO2 emissions,
there has been a general trend towards viewing renewable energy as a single vari-
able and overlooking potential disparities between different types of renewable
energy in terms of their impact on CO2 emissions. More importantly, little at-
tention has been paid to the extent to which different renewable energy sources
can be influenced by climate change. In order to fill these gaps, the present
study distinguishes between constituent sources of the renewable energy block,
and focuses further on the role of “climate-related” renewable energy sources in
reducing CO2 emissions from electricity production. Consistent with the def-
inition of Engeland et al. (2017), climate-related renewable energy (hereafter
referred to as CRE) sources are represented in this paper by wind, solar pho-
tovoltaics, and small-scale run-of-river hydroelectricity energy sources. What
justifies the appellation “climate-related renewable energy” is the fact that the
availability and sporadicity of these resources are dependent on climate factors

l-review-of-world-energy/using-the-review/methodology.html.html#accordion carbo
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such as air temperature, wind speed, solar radiation, precipitation, and river
runoff. Consequently, among different sources of energy, CRE sources are most
affected by climate change.

The main purpose of this work is to characterize the predictive impact of
CRE electricity production on CO2 emissions in the French electric power sys-
tem over the 2013-2021 period. To do so, a machine learning-based empirical
modeling framework is employed to first evaluate the importance of different
types of CRE electricity production in predicting CO2 emissions, and specify
the marginal effect of each CRE source on the predicted outcome of the model.
Through a counterfactual analysis, the predictive impact of CRE production
potential (as proxied by climate-derived energy indicators) on CO2 emissions
is then quantified. This analysis reveals if exploiting the full potential of CRE
sources, which is equivalent to an increase in the share of CRE electricity produc-
tion and a decrease in the share of non-CRE sources, would result in significantly
lower predicted emissions over the study period. Finally, four counterfactual
scenarios of increased CRE production over the study period are explored, and
the optimal mix of CRE sources for minimizing predicted emissions under each
scenario is identified. This analysis is complemented by the identification of
the optimal CRE mix that would minimize the intermittency of CRE electricity
production in France from 2013 to 2021. By limiting the scope of the study
to CO2 emissions from electricity production (instead of using composite or to-
tal emissions indicators), the present research undermines the possibility of the
precedence of emissions over renewable electricity generation. This provides a
sound conceptual basis for delineating the predictive effect of CRE electricity
production on CO2 emissions.

The contributions of this study to the literature on the relationship between
carbon emissions and electricity production from renewable and non-renewable
energy sources are manifold. First, while most of the existing studies in this area
are based on annual or monthly data, the present research capitalizes on emis-
sions and energy indicators data with a high (i.e. daily) temporal resolution.
Indeed, in a similar context to that of the present study, using data with coarse
temporal resolution (e.g. annual or monthly) leads to disregard of intra-monthly
or intra-annual variability and intermittency of renewable energy sources that
depend on climate (see Gernaat et al., 2021). Second, in the attempt to model
the relationship between carbon emissions and electricity production from re-
newable and non-renewable energy sources, this paper considers all categories
and subcategories of fuel types. This kind of fine-grained analysis has rarely
been undertaken in the energy economics literature. Third, to the best of the
author’s knowledge, this study is the first to quantify the predictive impact of
the (unexploited) CRE electricity production potential on energy-related CO2

emissions. To this should be added the methodological contributions towards
counterfactual estimation of CO2 emissions based on realizable CRE electricity
production, particularly in terms of the weighting scheme for energy indica-
tors (see Section 2.2.2). Fourth, by decomposing the CRE package into its
constituent elements (i.e. wind, solar photovoltaics, and run-of-river hydroelec-
tricity) rather than viewing it as a unified block, the present study is able to
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determine the optimal share of individual sources within the package that min-
imizes counterfactual predictions of CO2 emissions under near-feasible to ide-
alistic hypothetical CRE production scenarios. This scenario-based approach
has important implications for renewable energy development and management
in France, since it provides evidence of the relative importance of each CRE
source with regard to emissions reduction in the electricity sector. Finally, in
the evaluation of the predictive impact of CRE electricity production on CO2

emissions under the proposed scenarios, this research takes into account the
intermittency of CRE sources that is motivated by the natural variability of
climate factors. So far, this striking aspect of renewable electricity generation
has been largely neglected in the studies on the dynamics between emissions
and renewable energies.

The remainder of this paper is structured as follows. Section 2 describes
data and methodology of the analysis. The results are presented in Section 3. A
discussion of the study limitations and a few suggestions for future research are
provided in Section 4. The paper concludes with a summary of the key findings
and the empirical contributions made to the existing literature (Section 5).

2. Materials and Methods

2.1. Data

2.1.1. Realized CO2 emissions and electricity production by different fuel types

Consolidated and final half-hourly data on CO2 equivalent emissions from
electricity production (g/kWh), and the electrical power production by differ-
ent fuel types (MW) in France from January 1, 2013 to August 31, 2021 were
obtained from the éCO2mix data set, provided by the electricity transmission
system operator of France and available on the Open Data Réseaux Énergies
(ODRÉ) platform.5 The emissions indicator represents CO2 emissions released
only by the consumption of primary fuel used in power plants, and is calcu-
lated based on the relative contribution of fuel oil, coal, gas and biofuel energy
sources to CO2 emissions. For the sake of this study and consistent with the
nature of emissions data, cross-border physical power exchange (with England,
Spain, Italy, Switzerland, Germany and Belgium) and the power consumed by
pumps in pumped-storage hydroelectricity systems were disregarded. Further-
more, in light of methodological considerations, the analysis was restricted to
non-negative values of power production, and negawatts (negative megawatts),
if any, were set to zero. The original data were aggregated to average daily
values,6 and all power values in MW were converted to energy values in kWh.
Table 1 presents the the summary statistics for the original emissions and en-

5https://opendata.reseaux-energies.fr/. This platform is a subdivision of the open
platform for French public data (https://www.data.gouv.fr/)

6This aggregation is necessary to ensure consistency in sampling frequency across the
different data sets used in this study.
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ergy indicators used for empirical modeling (hereafter referred to as “realized”
emissions and energy indicators).

Table 1: Summary statistics of realized daily emissions and energy indicators over the study
period (from January 1, 2013 to August 31, 2021) based on the data provided by the electricity
transmission system operator of France. CO2 emissions values are expressed in grams (g).
The measurement unit of the electric energy produced by different fuel types is kWh.

Emissions/Energy Indicator Mean Max Min SD

CO2 Emissions per kWh 46.45 124.06 8.56 22.84

Fuel Oil (Combustion Turbine) 674,858 20,340,000 0 1,125,804

Fuel Oil (Cogeneration) 3,081,020 8,260,000 725,000 1,814,021

Fuel Oil (Other) 2,527,667 59,987,500 48,500 4,374,613

Coal 20,267,562 137,553,500 0 24,757,978

Gas (Combustion Turbine) 649,438 11,748,000 0 1,635,438

Gas (Cogeneration) 29,434,352 78,129,500 4,609,500 24,688,399

Gas (Combined Cycle Turbine) 47,794,491 138,265,500 0 40,036,372

Gas (Other) 1,906,760 14,620,500 312,000 1,687,226

Nuclear 1,057,000,000 1,458,000,000 530,400,000 166,199,782

Wind 70,972,076 321,939,000 3,475,500 54,964,062

Solar Photovoltaics 25,356,374 75,390,000 1,288,000 15,205,422

Hydroelectricity (Run-of-river) 113,731,842 190,018,500 34,160,000 35,640,184

Hydroelectricity (Lake) 45,365,080 117,566,500 6,776,500 19,626,978

Hydroelectricity (Pumped-storage) 16,000,279 41,715,000 1,621,500 7,322,262

Biofuel (Waste) 11,637,540 15,270,000 6,078,000 1,524,737

Biofuel (Biomass) 6,151,799 11,123,000 2,792,000 1,572,375

Biofuel (Biogas) 5,918,516 8,558,500 2,904,000 1,401,570

In addition to energy indicators, time-based features (i.e. year and month
of the year) were created with integer encoding7 and included in the empirical
model as numerical control variables to account for possible year and month
seasonality information in the data. The ultimate data set used for empirical
modeling includes 3165 daily observations (from January 1, 2013 to August 31,
2021) with 19 independent variables (consisting of 17 energy indicators and 2
time-based features), and the natural logarithm8 of CO2 emissions per kWh of
electricity generated as the response variable.

2.1.2. CRE electricity production estimates derived from climate variables

Climate variables such as air temperature, wind speed, solar radiation, pre-
cipitation, and river runoff can be transformed into potential renewable energy
indicators by means of physical or statistical models or a combination of both.
Numerical climate models for estimating CRE production potential are useful
for delineating important climate-driven changes in the energy sector both in
the short and the long term.9

7The use of integer encoding is permitted since the categories have a natural ordering.
8This transformation is necessary for empirical modeling purposes, i.e. to avoid potential

negative predicted values of the response variable. Predicted emissions are back-transformed
for the presentation and visualization of results.

9See Engeland et al. (2017) for a review of the foundations of such models, and a summary
of the studies on the nexus between climate variability and renewable electricity production.
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By Using a combination of physical and statistical models and consider-
ing the available installed energy capacity, the Copernicus Climate Change
Service (C3S) at the European Centre for Medium-Range Weather Forecasts
(ECMWF)10 has provided a set of energy indicators for Europe derived from
gridded reanalysis data on climate variables (Hersbach et al., 2020). This data
set serves as a critical reference for evaluating the quality of climate-to-energy
conversion models. The present study makes use of gridded and aggregated data
over France on daily onshore wind, solar photovoltaics, and run-of-river hydro-
electricity energy indicators from this collection (Ho et al., 2020; Saint-Drenan
et al., 2018) for the period between January 1, 2013 and August 31, 2021.

The estimated energy indicators derived from climate variables are used as
proxies for energy production “potential”, and therefore referred to as “realiz-
able” energy indicators further on in this paper. Indeed, they are assumed to
represent the level of CRE electricity production that could be attained given
the climate conditions of the study area (represented by the set of grid points
within the area) over the period of interest.11 Table 2 presents the the summary
statistics for these energy indicators.

Table 2: Summary statistics of realizable daily climate-related renewable energy indicators
over the study period (from January 1, 2013 to August 31, 2021) based on the data provided
by the Copernicus climate change service (C3S). The realizable electric energy which could
be generated by each fuel type is expressed in kWh.

Energy Indicator Mean Max Min SD

Wind 76,968,009 342,734,701 4,364,166 58,676,724

Solar Photovoltaics 29,833,555 58,314,090 1,865,264 13,638,494

Hydroelectricity (Run-of-river) 116,866,214 184,264,440 42,334,890 32,351,424

Figure 2 compares the distributions of original and estimated CRE indicators
over the study period. A comparison of the respective medians in each panel of
Figure 2 demonstrates a difference between the location of realized and realizable
energy indicators. The significance of this location shift is further assessed using
a non-parametric statistical test.

The results of the pairedWilcoxon signed-rank test (Wilcoxon, 1992; Conover,
1999) indicate that the median of the population of differences between esti-
mated (model-derived) and original CRE indicators is greater than zero in all
three cases (p < 0.01). From an empirical point of view, it thus seems perfectly
legitimate to consider the so-called realizable energy indicators derived from
climate variables as proxies for the CRE electricity production potential.

10https://cds.climate.copernicus.eu/
11This assumption, however, is subject to some limitations that are discussed in more detail

in Section 4.
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Figure 2: Compact box plots of realized (original) and realizable (estimated) CRE indicators
over the study period. Note: The upper (lower) whisker extends from the hinge to the largest
(smallest) value no further than 1.5 times the interquartile range. Data points beyond the
whiskers are removed from the plot for the sake of better visualization.

2.2. Methodology

2.2.1. Empirical modeling of CO2 emissions from electricity production based
on various fuel types

In order to empirically model (learn) the relationship between CO2 emis-
sions and the electric energy produced by different fuel types over the study
period, stochastic Extreme Gradient Boosting (XGBoost) algorithm of Chen
& Guestrin (2016) has been utilized.12 XGBoost is a cutting-edge, speedy and
highly performant decision-tree-based ensemble machine learning algorithm that
can provide accurate predictions of a response variable by integrating the es-
timates obtained from a number of base models (trees). This predictive tool
can model complex nonlinear relationships without assumptions about the data
distribution, and is unsusceptible to multicollinearity. In its most general form,
the tree ensemble model of the XGBoost algorithm that uses K trained trees
to predict the value of the response variable for a given data set with N data
points and p features (predictors) {(xi, yi) | i = 1, ...N, xi ∈ Rp, yi ∈ R} can be
expressed as

12As with any other predictive model, XGBoost does not in itself imply “causal” relation-
ships between variables. In this regard, by no means does the present modeling framework
suggest that a change in low-carbon (in particular CRE) electricity production directly causes
a change in CO2 emissions. Indeed, in the calculation of emissions indicator in the éCO2mix
data set, the contribution of low-carbon energy sources (nuclear, wind, solar photovoltaics,
and hydroelectricity) has been considered equal to zero. Hence, such sources cannot directly
“drive” emissions by definition. That being said, an increase in the share of nuclear and re-
newable energy sources inevitably translates into a decrease in the share of high-carbon energy
sources as main drivers of CO2 emissions. In this regard, a change in low-carbon electricity
production is expected to be associated with a change in emissions. This is exactly where an
empirical modeling framework like the one used here proves useful to characterize the “predic-
tive” relationship between CO2 emissions and electricity production from different fuel types
(including low-carbon ones).
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ŷi = f̂(xi) =

K∑
k=1

gk(xi) gk ∈ F (1)

where F = {g(x) = wq(x)} (q : Rp → J, w ∈ RJ) is the space of regression
trees, q is the structure of each individual (independent) tree that maps an
observation to the corresponding leaf score w, and J is the total number of
leaves in the tree (Chen & Guestrin, 2016).

Each regression tree starts with a root node and is grown to a specific depth
(i.e. the longest path from the root node to a leaf) by repeatedly splitting
the training data based on all or some of the features in the feature space.
This process results in a tree with a root node, a number of internal nodes
(each of which split data points by one feature), and some leaves to which
prediction scores (weights) are assigned. The ultimate predicted value of the
response variable for a given observation is obtained by taking the sum of all
the scores in the relevant leaves of individual trees. As proposed by Chen &
Guestrin (2016), the choice of splitting points and the assignment of prediction
scores in XGBoost are done by means of an improved and more regularized
version of gradient boosting technique, in such a way as to minimize loss of an
objective function that is composed of training loss and regularization (to avoid
overfitting). Mathematically speaking, the tree building algorithm is reliant
upon the minimization of

L =

N∑
i=1

L(ŷi, yi) +

K∑
k=1

Ω(gk) (2)

where

Ω(gk) = γJk +
1

2
λ

Jk∑
j=1

w2
j,k

Here, L is a loss (cost) function (i.e. squared error, by default) and mea-
sures the difference between original values of the response variable yi and the
predicted values ŷi (Chen & Guestrin, 2016). Jk and wj,k are the number of
leaves and the prediction score assigned to the j-th leaf of the k-th regression
tree, respectively. The parameter γ is the minimum loss reduction required
to further split the leaf node, and λ is the L2 regularization on the prediction
scores. These two, along with a number of tree-related parameters (together
called hyperparameters of the model), cannot be estimated from data and need
to be specified a priori.

In order to further minimize overfitting13 and find the best model specifica-

13Although this study takes preventative measures to reduce overfitting, the reader’s at-
tention is drawn to the fact that overfitting should not, in principle, be cause for concern in
the context of modern machine-learning models such as decision trees and ensemble meth-
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tion, the present study combines extensive grid search hyperparameter tuning
with repeated n-fold cross-validation (n = 5 with 5 repetitions). The metric
used to evaluate the model performance for each hyperparameter configuration
is the root-mean-square error (RMSE). There are 2592 variations in the hyper-
parameter search space and each variation is evaluated using repeated 5-fold
cross validation with 5 repetitions, resulting in a total number of 2592× 25 tree
ensemble models to be trained and evaluated. The hyperparameter configura-
tion that results in the minimum average RMSE across all folds is selected as
the best tune. Possible hyperparameter values are determined mainly on the
basis of recommendations of Boehmke & Greenwell (2019) and Thakur (2020).
Table 3 presents the hyperparameter configurations used for evaluating tree
ensemble models.

Table 3: Hyperparameter configurations used for evaluating tree ensemble models.

Hyperparameter Range Default Value Selected Values for Tuning

γ [0,∞) 0 {0.1,1,10}

η [0,1] 0.3 {0.05,0.1,0.2,0.3}

Maximum Depth {1..∞} 6 {3..8}

Minimum Child Weight [0,∞) 1 {7,10,20}

Column Sample by Tree (0,1] 1 { 6
19

, 10
19

, 14
19

}

Sub-sample (0,1] 1 {0.3,0.5}

Here, η is the learning rate (also called shrinkage parameter), which shrinks
prediction scores to prevent overfitting. γ is the minimum loss reduction re-
quired to make a further split on a node of a given tree. Increasing γ leads to
a more conservative algorithm. The maximum depth parameter controls the
number of terminal nodes in a a tree, and increasing its value makes the model
more complex and more prone to overfitting. Minimum child weight determines
the minimum sum of instance weight (hessian) required in a child node of a tree.
A higher minimum child weight provides more conservative results. The column
sample by tree parameter controls the fraction of columns (features) used for
constructing each tree. Sub-sampling of columns takes place once for every tree
constructed. Using values less than 1 for this parameter leads to a more conser-
vative algorithm. The sub-sample parameter determines what fraction of data
should be used to build trees in every boosting iteration. Using values less than
1 for this parameter leads to “stochastic” boosting, distinguished from “regu-
lar” boosting (which makes use of all points to grow a tree). In this analysis,
the number of trees used for boosting is set to 50 and 100. In addition, the
hyperparameter λ is kept at the default value of 1.

It should be noted that the utilized algorithm is safeguarded against likely
temporal autocorrelation in the data for two reasons. First, the data are divided,
in a random manner, into training and validation data sets during the repeated
5-fold cross-validation process. Second, using stochastic boosting (as opposed to

ods. Belkin et al. (2019) show that modern (and complex) algorithms with near-perfect fit in
training may still exhibit strong performance on unseen data.
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regular boosting) makes the algorithm randomly select (without replacement)
a proportion of the training data at each iteration. Therefore, the likelihood of
neighboring observations being used by the algorithm at each iteration is very
negligible.

Once the the model with the best tune is obtained from hyperparameter
optimization, the “importance” of CRE sources in predicting emissions is cal-
culated using the permutation feature importance algorithm with the RMSE
ratio as the importance measure (Breiman, 2001; Fisher et al., 2019; Molnar,
2020), and 1000 repetitions. Permutation with repetition is performed with the
aim of constructing the null distribution of importance measures. In its simpli-
fied form, the feature importance measure of a feature p can be mathematically
expressed as

Feature Importancep =
RMSE(yi, f̂(x

perm:p
i ))

RMSE(yi, f̂(xi))
(xi ∈ Rp; yi ∈ R) (3)

where xperm:p
i is the ith instance with the pth feature replaced by a randomly

sampled value, without replacement, from another instance. Being based on
resampling without replacement, the permutation feature importance algorithm
of Fisher et al. (2019) allows for conducting a permutation test with the null
hypothesis that the importance of feature p is 1:

H0 : Feature Importancep = 1 (4)

If the pth feature is not important in the prediction, one should expect that
the values for its feature importance measure be around 1. In point of fact,
the proposed permutation test provides a framework for computing confidence
intervals and p-values from resampling without replacement, and allows for de-
termining statistical significance of a feature’s importance.

As a complement to the features’ importance evaluation, the influence of
CRE electricity production on the prediction of the tree ensemble model is
evaluated and visualized using mean-centered accumulated local effects (ALE)
(Apley & Zhu, 2020). In machine learning, the ALE of a feature at a certain
value is interpreted as the main effect of the feature at that value compared to
the average prediction of the data (Molnar, 2020). By aggregating the calcu-
lated effects at different values, ALE plots–as unbiased alternatives to partial
dependence plots–are hence able to show the (possibly nonlinear) relationship
between the response variable and a given input feature. In mathematical terms,
the mean-centered14 ALE of a continuous feature p at a given value x is esti-
mated as

f̂p,ALE(x) =
ˆ̃
fp,ALE(x)−

1

N

N∑
i=1

ˆ̃
fp,ALE(x

(i)
p ) (5)

14Mean-centering the ALE plot makes the average effect over the data be zero.
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where

ˆ̃
fp,ALE(x) =

lp(x)∑
l=1

1

np(l)

∑
i:x

(i)
p ∈Np(l)

[
f̂(zl,p, x

(i)
\p )− f̂(zl−1,p, x

(i)
\p )

]

To estimate
ˆ̃
fp,ALE(x), the distribution of the feature of interest p is divided

into a number of intervals (grids) denoted by Np(l), with np(l) being the number
of feature points that lie within the interval Np(l). The inner sum adds up
the “effects” of all data points within such an interval (i.e. the differences in
predictions, if the value of the feature of interest is replaced with the starting
and end points of the given interval, namely zl−1,p and zl,p). This sum is then
divided by the number of feature points in this interval to obtain the average
difference of the predictions for this interval. Finally, the outer sum accumulates
the average effects across all intervals up to and including the interval lp(x) to
which x belongs (Apley & Zhu, 2020; Molnar, 2020). In order to define the
aforementioned intervals, the present study makes use of the percentiles of the
distribution of features. A distinct advantage of this choice is that each interval
will contain the same number of data points. However, in this approach the
length of intervals used for the calculation of ALE may not be the same.

2.2.2. Counterfactual estimation of CO2 emissions based on realizable CRE
electricity production

Once the predictive relationship between CO2 emissions and electricity pro-
duction from different fuel types is learned by the empirical model, original (real-
ized) electricity production indicators are replaced with new conjectural values,
and predictions of counterfactual emissions are generated from the model. The
objective of this section is to describe a hypothetical yet achievable scenario, in
which the maximum possible electric energy is generated from climate variables
of the study area at a given time point, and the share of energy from non-CRE
sources is reduced on a pro rata basis. Analyzing such a scenario is the first step
towards quantifying the effect of increased share of CRE electricity production
on predicted CO2 emissions.

On a given day t, if the realizable value of a CRE source is greater than
its corresponding realized value, the former is used as the new energy indicator
and the difference between the realizable and realized values is regarded as the
“unexploited” electricity production potential. Otherwise, the indicator is kept
at the realized value, assuming that the potential for CRE electricity production
has already been fully exploited.New counterfactual shares of CRE sources in the
total electricity production are calculated based on the new energy indicators.
In the next step, new counterfactual shares of non-CRE sources are calculated
in such a way as to keep the total electricity production at the original level.
This method of share reallocation guarantees a pro rata contribution of each
non-CRE source to electricity production in the new setting. In other words, an
increase in the share of the CRE package is counterbalanced by a proportional
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decrease in the share of each source in the non-CRE package.15 In formal
notation,

Share
(new)
i,t = Share

(old)
i,t ×

1−
∑

j Share
(new)
j,t∑

i Share
(old)
i,t

(6)

where

Share
(old)
i,t =

Energy
(old)
i,t∑

S Energyt
,

Share
(new)
j,t =

Energy
(new)
j,t∑

S Energyt
,

Energy
(new)
j,t = max

(
Energy

(realized)
j,t ,Energy

(realizable)
j,t

)
The superscripts (new) and (old) characterize new conjectural and origi-

nal (realized) values, respectively. In addition, i ∈ S \ {W,PV,ROR}, j ∈
{W,PV,ROR}, and S is the set of all energy indicators. W, PV and ROR
denote wind, solar photovoltaics and run-of-river hydroelectricity, respectively.
For non-CRE sources, new energy indicators are then calculated by multiplying
their corresponding new share by the original sum of electricity production by
different fuel types:

Energy
(new)
i,t = Share

(new)
i,t ×

∑
S

Energyt (7)

To test whether there is statistically significant difference between the lo-
cations of counterfactual and observed emissions in this scenario, the non-
parametric Wilcoxon signed-rank test is used. The null hypothesis of this test is
that the median difference between pairs of counterfactual and observed emis-
sions is greater than or equal to zero. The rejection of the null hypothesis
leads to the conclusion that, with the same level of total electricity produc-
tion, increasing the share of energy from CRE sources (i.e. exploiting their full
potential) decreases CO2 emissions from electricity production.

2.2.3. Characterizing the optimal mix of CRE sources for minimizing predicted
CO2 emissions under different production scenarios

In another attempt to specify the effect of CRE electricity production on pre-
dicted CO2 emissions, different CRE production scenarios–from near-realistic to
ambitious–are investigated and the optimal mix of CRE sources for minimizing

15While in this proposed framework the relative share of nuclear energy (as the main source
of electricity in France) in the non-CRE package remains unaltered (with a still higher share
of other sources in the non-CRE package), policy concerns are mainly included in the direct
substitution of CRE sources for nuclear energy and the likely exclusion of nuclear power plants
in the future.
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emissions under each scenario is identified. Such scenarios would have been
realized had the CRE electricity capacity been higher over the study period.
Indeed, this analysis provides an overview of the relative importance of each
CRE source (wind, solar photovoltaics and run-of-river hydroelectricity) within
the CRE package with regard to the reduction of predicted CO2 emissions.

With this aim and following the methodology of François et al. (2016), new
CRE indicator daily series from Section 2.2.2 are normalized so that the mean
production of each source equals the mean total daily electricity production over
the study period (the same notation as above):

Energy
(normalized)
j,t =

Energy
(new)
j,t

⟨Energyj,t⟩
× ⟨

∑
S

Energyt⟩ (8)

where ⟨⟩ is the temporal mean operator. In this framework, a CRE mix elec-
tricity production can be described as a weighted sum of the three normalized
CRE indicator series:

EnergyCRE,t(ζ) = ζ
∑
j

αjEnergy
(normalized)
j,t (αj ≥ 0,

∑
j

αj = 1) (9)

where αj is the share of the j-th CRE source in the CRE mix (package),
and ζ is the ratio between the average energy produced by the CRE energy mix
and the average total electricity production over the study period:

ζ =
⟨EnergyCRE,t⟩
⟨
∑

S Energyt⟩
(10)

If ζ = 1, the mean daily CRE electricity production equals the mean daily
total electricity production (i.e. the CRE electricity production is, on average,
equal to the total electricity production over the study period). If ζ < 1, a frac-
tion of the total electricity production can, on average, be fulfilled by the CRE
mix over the entire period. For the sake of this study, four hypothetical CRE
electricity production scenarios with ζ = 0.25, 0.5, 0.75 and 1 are considered.16

For each scenario, all different combinations of wind, solar photovoltaics and
run-of-river hydroelectricity in the CRE mix (with each share αj ranging from
0 to 1 in increments of 0.05) are used to construct new CRE indicators. This
results in 231 unique configurations of the CRE mix for each value of ζ. Under
a specific scenario and for each configuration, the shares of non-CRE sources
are reallocated following the same approach as described in Section 2.2.2, and

16To be as realistic as possible, the present study sets the upper bound of ζ to 1. This
means that scenarios with mean daily CRE electricity production exceeding the original mean
daily total electricity production over the study period are not considered.
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the empirical model introduced in Section 2.2.1 is utilized for generating predic-
tions of counterfactual emissions. For a given scenario, the configuration that
minimizes predicted mean daily CO2 emissions over the study period is selected
as the optimal CRE mix for emissions reduction.

Moreover, in order to account for the intermittency of CRE electricity pro-
duction that is driven by the natural variability of climate factors (Seyedhashemi
et al., 2021), the coefficient of variation (i.e. the ratio of the standard deviation
to the mean) of the normalized daily CRE mix is calculated for each of the
above-mentioned 231 configurations. The configuration that minimizes the co-
efficient of variation (hereafter denoted as CV) over the study period is selected
as the optimal CRE mix for reducing intermittency. This additional analysis is
offered to compare the optimal mix of CRE sources for minimizing CO2 emis-
sions under different production scenarios and the optimal mix of CRE sources
for reducing problems of intermittency.17

All the analyses and data visualization in this study have been carried out in
R software environment (R Core Team, 2020; Kuhn, 2008; Molnar et al., 2018;
Hamilton & Ferry, 2018).

3. Results

3.1. Influence of CRE electricity production on the prediction of CO2 emissions

Among all hyperparameter configurations for evaluating the tree ensemble
models (see Section 2.2.1), the configuration with the hyperparameter values
shown in Table 4 proved to minimize average RMSE across all folds (average
RMSE= 0.062; average R2 = 0.986), hence selected as the best tune.

Table 4: Optimal hyperparameter configuration of the tree ensemble model

Hyperparameter Best Tune

γ 0.1

η 0.1

Maximum Depth 7

Minimum Child Weight 10

Column Sample by Tree 14
19

Sub-sample 0.5

Number of Trees 100

The model with this optimal hyperparameter configuration was used as the
base model for statistical analyses and prediction purposes of this study. The
results of the permutation feature importance algorithm for the three CRE
indicators based on the best empirical model are presented in Table 5. Here,
the importance of each feature is measured by calculating the increase in the
model’s prediction error (in terms of the RMSE ratio) at each repetition, when

17The CV depends only on the shares of wind, solar photovoltaics and run-of-river hydro-
electricity in the CRE mix, and is independent of the production scenario. Consequently, the
optimal CRE mix for reducing intermittency is calculated once, regardless of the value of ζ.
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the values of that feature are shuffled (Molnar, 2020). A given CRE indicator is
“important” for the prediction of emissions, if permuting its values increases the
model RMSE (i.e. the model is reliant on the feature for the prediction). The
CRE indicator is unimportant if permuting its values leaves the model RMSE
unaltered (i.e. the feature is ignored by the model for the prediction).

Table 5: Permutation feature importance of CRE sources in predicting CO2 emissions (number
of repetitions = 1000).

Feature
Importance (RMSE Ratio)

5th Percentile Median 95th Percentile

Wind 1.171104 1.181664 1.192710

Solar Photovoltaics 1.007700 1.009709 1.011769

Hydroelectricity (Run-of-river) 1.252940 1.268573 1.282155

For all CRE indicators, the value 1 is outside the 90% confidence interval
for feature importance estimates. This concludes that wind, solar photovoltaics
and run-of-river hydroelectricity features are all important for the prediction of
emissions resulting from the generation of electrical power at the 0.1 significance
level (see Equation 4). Among the three CRE indicators, run-of-river hydroelec-
tricity proves to be the most important feature for predicting emissions, followed
by wind energy. The importance of solar photovoltaics feature is only marginal,
since the 5th, 50th and 95th percentiles of the distribution of RMSE ratio for
this feature are close to 1. This finding acts as an early indicator of the level of
importance of each CRE source for emissions reduction in France.

The influence of each CRE source on the prediction of emissions by the best
model is further assessed by calculating ALE values. Figure 3 presents ALE
plots of wind, solar photovoltaics and run-of-river hydroelectricity features. In
basic terms, multiple panels of this figure illustrate how the model predictions
change–compared to the average prediction of the data–for different values of
each CRE indicator.

As a first observation, the ALE curve is monotonically non-increasing for
all CRE indicators.18 This means that the prediction decreases or remains
constant, compared to the average prediction, with increasing CRE electric-
ity production–a finding consistent with expectations that renewable energy
sources can contribute to the reduction of carbon emissions.19 For wind, solar

18Although interval-wise effects are accumulated to construct a smooth ALE curve, the
effects are estimated locally using different data points. Therefore, one should be cautious
when interpreting the effect across intervals (Molnar, 2020).

19Special caution must be taken when evaluating and interpreting the predictive impact of
individual low-carbon power generation technologies on CO2 emissions in the electricity sector.
A climate-driven increase (decrease) in the share of a given CRE source may not necessarily be
counterbalanced by a decrease (increase) in the share of high-carbon energy sources (coal, fuel
oil, gas and biofuel). For instance, an increase (decrease) in the share of solar photovoltaics
due to greater (smaller) availability of solar resources may be offset by a decrease (increase)
in the share of other non-polluting energy sources (e.g. nuclear, hydroelectricity, etc.) and
not necessarily fossil-fuel fired electricity generation, hence leaving emission levels unaltered.
A full discussion of the elasticity of inter-fuel substitution between different CRE sources,
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Figure 3: Mean-centered accumulated local effects (ALE) of CRE sources in predicting CO2

emissions over the study period. The distribution of data points for each feature is displayed
on the margin of horizontal axis.

photovoltaics and run-of-river hydroelectricity features, the prediction of CO2

emissions remains approximately constant in intervals below the 30th, 70th and
13th percentile (corresponding to 34898000, 31780500, and 66610500 kWh of
electrical energy produced), and above 99th, 92nd and 98th percentile (cor-
responding to 256266500, 50565500, and 178323000 kWh of electrical energy
produced), respectively. Compared to the case of wind and run-of-river hy-
droelectricity features, the ALE function of the solar photovoltaics feature is
constant on larger intervals. Furthermore, the range of change in the ALE of

between nuclear and CRE sources, and between different fossil fuels and CRE sources lies
beyond the scope of this study.
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solar photovoltaics (i.e. as the feature increases from the its minimum value to
the maximum value) is relatively smaller than those of wind and run-of-river
hydroelectricity features (0.009 for solar photovoltaics, compared to 0.076 for
wind and 0.075 for run-of-river hydroelectricity). This is another important
finding in the understanding of the significance of each CRE source for reducing
emissions that are associated with the generation of electrical power.

3.2. Estimated counterfactual CO2 emissions based on realizable CRE electricity
production

Using new conjectural energy indicators constructed from realizable CRE
electricity production (see Section 2.2.2), the best model can generate counter-
factual estimates of CO2 emissions, i.e. emissions that would have been realized
provided that the full potential of CRE sources for electricity production had
been exploited. Figure 4 compares observed (realized) and estimated counter-
factual daily emissions based on new energy indicators in France from January
1, 2013 to August 31, 2021.
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Figure 4: Observed (realized) and estimated counterfactual daily emissions based on realizable
CRE electricity production over the study period. For visualization purposes, data for each
year are presented in a separate panel.

The percentage difference between estimated counterfactual and observed
daily emissions (calculated as [estimated counterfactual emissions−observed
emissions)/observed emissions] ×100) ranges from −20.15 to 19.91, with the
average percentage difference being −1.13. This result highlights that exploit-
ing the full potential of climate variables for electricity production would have,
on average, resulted in 1.13% reduction in predicted CO2 emissions in France
over the study period. The distribution of the difference between estimated
counterfactual and observed emissions over the entire study period is illustrated
in Figure 5.
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Figure 5: Box plot of the difference between estimated counterfactual emissions (based on
realizable CRE electricity production) and observed emissions over the study period. Note:
The upper (lower) whisker extends from the hinge to the largest (smallest) value no further
than 1.5 times the interquartile range. Data points beyond the whiskers are removed from
the plot for the sake of better visualization.

The null hypothesis of the non-parametric Wilcoxon signed-rank test (i.e.
the median difference between pairs of counterfactual and observed emissions is
greater than or equal to zero) is rejected at the 0.01 significance level, indicating
that an increase in the share of energy from CRE sources (under a scenario where
the maximum possible electric energy is generated from climate variables) would
have been associated with a statistically significant decrease in CO2 emissions
from electricity production over the study period.

3.3. Optimal mix of CRE sources for minimizing predicted CO2 emissions under
different production scenarios

This section presents the results of the analysis of the four electricity pro-
duction scenarios outlined in Section 2.2.3. Under each scenario, counterfactual
estimates of CO2 emissions (generated by the base empirical model) are com-
pared with observed emissions.

The first scenario corresponds to the situation where the mean daily CRE
electricity production equals 25% of the mean electricity production over the
study period (ζ = 0.25). The empirical ζ based on the realized and realizable
CRE electricity production (as defined in Sections 2.1.1 and 2.1.2) over the
study period is 0.144 and 0.158, respectively. In other words, the CRE electric-
ity production satisfied, on average, 14.4% of the total electricity production
over the study period in reality. Had the full potential of CRE sources been
exploited over the same period, this ratio would have risen to 15.8%. From these
observations, it is clear that the first scenario is the most realistic and feasible
among the four proposed scenarios. Figure 6 compares observed (realized) and
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estimated counterfactual daily emissions under the first scenario from January
1, 2013 to August 31, 2021.
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Figure 6: Observed (realized) and estimated counterfactual daily emissions over the study
period under the first production scenario (ζ = 0.25). For visualization purposes, data for
each year are presented in a separate panel.

The percentage difference between estimated counterfactual and observed
daily emissions for ζ = 0.25 ranges from −36.07 to 35.69, with the average
percentage difference being −9.56. This suggests that, under the first hypothet-
ical CRE electricity production scenario, daily CO2 emissions would have, on
average, decreased by 9.56%.

The second scenario corresponds to the situation where the mean daily CRE
electricity production equals 50% of the mean electricity production over the
study period (ζ = 0.5). Figure 7 compares observed (realized) and estimated
counterfactual daily emissions under the second scenario from January 1, 2013
to August 31, 2021.

The percentage difference between estimated counterfactual and observed
daily emissions for ζ = 0.5 ranges from −78.34 to 36.25, with the average
percentage difference being −24.93. This suggests that, under the second hypo-
thetical CRE electricity production scenario, daily CO2 emissions would have,
on average, decreased by 24.93%.

The third scenario corresponds to the situation where the mean daily CRE
electricity production equals 75% of the mean electricity production over the
study period (ζ = 0.75). Figure 8 compares observed (realized) and estimated
counterfactual daily emissions under the third scenario from January 1, 2013 to
August 31, 2021.

The percentage difference between estimated counterfactual and observed
daily emissions for ζ = 0.75 ranges from −83.03 to 32.32, with the average
percentage difference being −36.92. This suggests that, under the second hypo-
thetical CRE electricity production scenario, daily CO2 emissions would have,
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Figure 7: Observed (realized) and estimated counterfactual daily emissions over the study
period under the second production scenario (ζ = 0.5). For visualization purposes, data for
each year are presented in a separate panel.
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Figure 8: Observed (realized) and estimated counterfactual daily emissions over the study
period under the third production scenario (ζ = 0.75). For visualization purposes, data for
each year are presented in a separate panel.
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on average, decreased by 36.92%.
The fourth and last scenario corresponds to the situation where the mean

daily CRE electricity production equals the mean daily total electricity produc-
tion (ζ = 1). This scenario is the most ambitious among the four proposed
scenarios. Figure 9 compares observed (realized) and estimated counterfactual
daily emissions under the fourth scenario from January 1, 2013 to August 31,
2021.
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Figure 9: Observed (realized) and estimated counterfactual daily emissions over the study
period under the fourth production scenario (ζ = 1). For visualization purposes, data for
each year are presented in a separate panel.

The percentage difference between estimated counterfactual and observed
daily emissions for ζ = 1 ranges from −87.06 to 32.32, with the average per-
centage difference being −47. This suggests that, under the fourth hypothetical
CRE electricity production scenario, daily CO2 emissions would have, on aver-
age, decreased by 47%.

The distributions of the difference between estimated counterfactual and ob-
served emissions under the four proposed scenarios over the entire study period
are illustrated in Figure 10.

The null hypothesis of the non-parametric Wilcoxon signed-rank test (i.e.
the median difference between pairs of counterfactual and observed emissions
is greater than or equal to zero) is rejected at the 0.01 significance level for
all the proposed scenarios. The results confirm that an increase in the ratio
of mean daily CRE electricity production to mean total electricity production,
would have been associated with a statistically significant decrease in predicted
CO2 emissions in France from 2013 to 2021. From a practical and economic
standpoint, this means that increasing the share of CRE electricity production
and decreasing the share of non-CRE sources, while retaining the same level
of total production, would have significantly reduced emissions over the study
period.
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Figure 10: Box plot of the difference between estimated counterfactual emissions under dif-
ferent production scenarios (ζ = 0.25, 0.5, 0.75 and 1), and observed emissions over the study
period. Note: The upper (lower) whisker extends from the hinge to the largest (smallest)
value no further than 1.5 times the interquartile range. Data points beyond the whiskers are
removed from the plot for the sake of better visualization.

In the next step and in order to characterize the relative importance of each
CRE source for reducing predicted CO2 emissions from electricity production,
the optimal CRE mix for emissions reduction under each proposed scenario is
identified. Figure 11 depicts the predicted mean daily CO2 emissions over the
study period in the CRE mix space. The share of each source in the CRE
package ranges from 0 to 1 in increments of 0.05, with the sum of shares being
equal to 1.

Table 6 presents the optimal CRE mix for emissions reduction under the
four proposed scenarios (ζ = 0.25, 0.5, 0.75 and 1), and the corresponding pre-
dicted mean daily CO2 emissions for each mix. These results offer additional
evidence that run-of-river hydroelectricity is the most important source for re-
ducing energy-related CO2 emissions in France, with up to 75% share in the
optimal CRE mix. The only exception is when ζ = 0.5, where the share of
run-of-river hydroelectricity is less than the share of wind in the optimal CRE
mix. Solar photovoltaics has the smallest share of CRE sources in the optimal
mix under all proposed scenarios.

These results should be considered in comparison with realized and realizable
mean shares of the three sources in the CRE mix. The empirical mean shares
of wind, solar photovoltaics and run-of-river hydroelectricity in the CRE mix
based on the realized electricity production (as defined in Section 2.1.1) are
31.11%, 13.06% and 55.82%, respectively, with the corresponding mean daily
CO2 emissions being 46.44 gCO2/kWh. In a similar vein, the empirical mean
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Figure 11: Ternary graphs of the mean daily CO2 emissions over the study period for different
shares of wind, solar photovoltaics and run-of-river hydroelectricity in the CRE mix under
different production scenarios (ζ = 0.25, 0.5, 0.75 and 1). The optimal CRE mix for emissions
reduction is marked with a circle on each graph.

Table 6: Optimal CRE mix for emissions reduction under the four proposed scenarios, and
the corresponding predicted mean daily CO2 emissions.

Scenario
Optimal CRE Mix

gCO2/kWh (Mean)
SW SPV SROR

ζ = 0.25 40% 0% 60% 41.56

ζ = 0.5 55% 5% 40% 34.47

ζ = 0.75 35% 5% 60% 28.15

ζ = 1 20% 5% 75% 22.10
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shares of wind, solar photovoltaics and run-of-river hydroelectricity in the CRE
mix based on the realizable electricity production (as defined in section 2.1.2)
are 31.84%, 14.98% and 53.17%, respectively, with the corresponding predicted
mean daily CO2 emissions being 45.7 gCO2/kWh. From this comparison, two
key findings emerge: (1) an increase in the share of CRE electricity production
is associated with a decrease in average emissions from electricity generation,
and (2) in both real and hypothetical contexts, the shares of different sources
are not uniformly distributed within the CRE package.

To characterize the relative importance of each source for reducing the inter-
mittency of CRE electricity production, the optimal CRE mix that minimizes
CV over the study period is identified. This allows for comparison between the
optimal CRE mix for emissions reduction under different scenarios and the opti-
mal CRE mix for reducing intermittency. Indeed, the configurations that result
in the minimum mean daily CO2 emissions under the proposed scenarios do not
necessarily result in low intermittency and high reliability of CRE electricity
production over the study period. Figure 12 depicts the CV in the CRE mix
space based on the normalized CRE indicator series over the study period. The
share of each source in the CRE package ranges from 0 to 1 in increments of
0.05, with the sum of shares being equal to 1.
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Figure 12: The coefficient of variation (CV) of the normalized daily CRE mix over the study
period. The optimal CRE mix reducing intermittency is marked with a circle on the graph.

The shares of wind, solar photovoltaics, and run-of-river hydroelectricity in
the optimal CRE mix for reducing the intermittency are 15%, 30% and 55%, re-
spectively, with the corresponding CV being 0.22.20 This CRE mix would result
in the mean daily CO2 emissions of 42.47, 35.5, 28.96 and 23 gCO2/kWh under

20The empirical CV of the CRE package based on the realized and realizable CRE electricity
production (as defined in Sections 2.1.1 and 2.1.2) are 0.31 and 0.30, respectively.
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the first, second, third and fourth proposed scenario, respectively. Comparing
these values with the optimal values in Table 6, it can be deduced that the
optimal CRE mix for reducing intermittency is associated with slightly larger
emissions than those of the optimal CRE mix for emissions reduction under the
proposed scenarios.

These findings are important for two reasons. First, while the share of wind
is larger than that of solar photovoltaics in the optimal CRE mix for emissions
reduction under all the proposed scenarios, solar photovoltaics proves to have
a larger share than wind in the optimal CRE mix for reducing intermittency.
Second, among the three sources, run-of-river hydroelectricity has the largest
share in the optimal CRE mix as it was the case for the optimal CRE mix for
emissions reduction under three (out of four) proposed scenarios. The results
of the present study can complement those of François et al. (2016), who de-
termined the optimal CRE mix for maximizing energy penetration in France
over the 1980 − 2012 period (SW = 15%, SPV = 45%, SROR = 40%, with the
corresponding CV being 0.28). While beyond the scope of this paper, disentan-
gling the complexities in finding the optimal balance among emissions reduction,
intermittency reduction and energy penetration maximization might prove an
important area for further investigation.

4. Discussion

On the part of European countries, the development of electricity generation
from renewable sources and the European Union Emissions Trading Scheme (EU
ETS)–the mainspring of the European Union’s policy to reduce CO2 emissions–
are two important tools to address climate change. Nevertheless, complex inter-
actions between these instruments, and in particular, the potential dampening
effects of renewable electricity growth on emissions allowances prices, have raised
considerable doubts on the feasibility of combining different targets and policies
to effectively reduce carbon emissions (see del Ŕıo (2017) and Möst & Fichtner
(2010)). A multidisciplinary economic analysis of this interaction by del Ŕıo
(2017) indicates that most of the concerns on this matter are not supported
by economic theory, and that the combination of the EU ETS and renewable
energy-based electricity development should be favored. Notwithstanding, after
several years of research, there is still no firm consensus on the environmental
viability of combining emissions trading systems and renewable energy expan-
sion. According to a recent theoretical study, in the long run, emissions trading
systems may impede the expansion of renewable energy capacity rather than
promoting it (Bersani et al., 2022). In this regard, a venue for future research
includes (1) replicating the findings of the present research in other Member
States of the EU ETS, and (2) empirically investigating the interaction between
the EU ETS and the development of different types of CRE electricity pro-
duction in Europe, especially by focusing on the economic value of renewable
energy-induced emissions reduction considering the EU ETS allowance prices
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and potential carbon leakage.21

As with the majority of studies, the findings of this research have to be
considered in the light of some limitations. The first limitation concerns the
choice of proxies for CRE electricity production potential. It could be argued
that in the process of estimating counterfactual CO2 emissions, the construc-
tion of new CRE indicators relies only on the realizable CRE indicators that
are greater than their corresponding realized values (see Section 2.2.2). In sta-
tistical terms, only “overestimated” CRE electricity production derived from
climate variables is retained and “underestimated” values are disregarded. The
assumption here is that, if the realized energy indicators are greater than the
indicators estimated by the climate-to-energy model, the potential for CRE
electricity production has already been fully exploited and there is therefore no
point in utilizing the climate-derived energy indicators in such a case. In justifi-
cation of this assumption, an argument can be made that in 63.06%, 68.53% and
62.27% of daily observations, the so-called realizable indicators are greater than
their corresponding realized values for wind, solar photovoltaics, and run-of-river
hydroelectricity, respectively. Moreover, for wind, solar photovoltaics, and run-
of-river hydroelectricity, the normalized root-mean-square deviation (defined as
the square root of the quadratic mean of the differences between realizable and
realized values, divided by the range of realized values) that is associated with
“overestimation” instances is, respectively, 1.6, 1.45 and 1.32 times greater than
the normalized root-mean-square deviation associated with “underestimation”
instances for the same energy source. Unless the models behind the data de-
scribed in Section 2.1.2 are prone to systematic overestimation, one possible
conclusion that can be drawn from these results is that the transformation of
gridded climate variables into energy indicators would provide more of a refer-
ence to assess the “potential” of CRE sources than an estimation of the level of
energy generation practically achieved. This assumption is the primary limita-
tion to the interpretation of the results presented in Section 3.2. Nevertheless,
in the absence of better alternatives, climate-to-energy conversion models are
the only tools available to measure the (unexploited) potential for electricity
production from CRE sources.

Another limitation of the present study includes the non-consideration of
within-country (i.e. regional) dynamics between carbon emissions and electric-
ity production from renewable energy sources. This limitation is mainly rooted
in the lack of data at the regional level on CO2 emissions from electricity pro-
duction at daily time scale. Upon availability of more spatially-fine-grained data
on emissions and climate-derived energy indicators, future studies could explore
such regional dynamics. To provide a starting point for discussion and further re-
search, Figure 13 illustrates the average share of daily electricity production from
wind, solar and hydroelectric sources (run-of-river, lake and pumped-storage) by
administrative region in metropolitan France over the study period. As shown

21As a relevant work in this area, see the study of Beltrami et al. (2021) that has examined
the value of carbon emission reduction induced by renewable energy production in Italy.
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in this figure, the share of wind and solar photovoltaics energy in electricity pro-
duction is higher in northern and southern (coastal) regions, respectively. As
expected, hydropower generation is more pronounced in mountainous regions,
with the Auvergne-Rhône-Alpes region having a high average share of 44.55%
in total electricity production in France over the study period.

Wind Solar Photovoltaics Hydroelectricity

10

20

30

40

Share (%)

Figure 13: Average share of daily electricity production from wind, solar and hydroelectric
sources (run-of-river, lake and pumped-storage) by region in metropolitan France over the
study period.

Additionally, neither energy storage and residual load variability nor the
economic and social cost of increasing the share of renewable energy vis-à-vis
emissions reduction is considered in this paper. The study of Shirizadeh &
Quirion (2021) has evaluated the relative contribution of renewable (wind, solar
photovoltaics, run-of-river and lake hydroelectric) energy production, nuclear
power and CCS technologies to the cost-optimal electricity mix in France, tak-
ing into account the social cost of carbon. The authors have found that a
cost-optimal power mix consists of approximately 75% electricity production
by renewable energy sources, and the remaining 25% is shared among nuclear
power and fossil fuels, with or without CCS technologies. In a subsequent study,
Shirizadeh et al. (2022) have examined the robustness of a renewable power sys-
tem for France to key technology cost uncertainties by considering several cost
scenarios. They have found that, although the cost-optimal electricity mix in
France heavily depends on assumptions about technology costs, investments in
the development of renewable energy should be prioritized even if those un-
derlying cost assumptions prove to be wrong.22 These findings, together with
the results of the present study, may be important for policy and subsequent
research.

Last but not least, it is worth noting that the principal outcomes of this
explorative study are based on historical data and a counterfactual analysis of
the nexus between CRE electricity production and CO2 emissions in France.
Hence, one should be careful when interpreting or extrapolating these results to
other settings and/or time periods. For instance, in the majority of proposed
scenarios, run-of-river hydroelectricity is identified as the CRE source of greater
relative importance for reducing counterfactual predictions of CO2 emissions

22Also see the study of Chu & Hawkes (2020) that has proposed a multi-objective optimiza-
tion model to find the optimal mix of CRE sources in global electricity systems, considering
cost, residual load variability, and portfolio output variability.
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over the 2013-2021 period. However, the soundness of increased investment
in the development of run-of-river hydroelectric power facilities (either by in-
creasing the number of run-of-river power plants or improving the efficiency of
installed power plants) to cut CO2 emissions in the future is subject to the
extent that France’s run-of-river hydropower potential is affected by climate
change, on top of cost considerations. A study based on the climate change
projections and a set of scenario assumptions for future water use in Europe
(Lehner et al., 2005) confirms that run-of-river hydropower potential (as mea-
sured by river discharges) will remain rather stable in the case of France for the
time slices for the 2020s and 2070s. With the help of newly-developed climate
projections, further research on this direction is warranted.

5. Conclusion

As a path forward to combat global climate change, the development of re-
newable energy share of electricity production remains the cornerstone of CO2

emissions reduction in the electric power sector. Considering the dependence
of the availability and sporadicity of climate-related renewable energy (CRE)
sources (wind, solar photovoltaics, and small-scale run-of-river hydroelectric-
ity) on climate factors, the relationship between CO2 emissions and electricity
production from these sources merits careful analysis. By means of a cutting-
edge decision-tree-based modeling technique, this study characterized the re-
lationship between daily CRE electricity production and energy-related CO2

emissions in France and offered a framework for counterfactual analysis of such
relationship over the 2013-2021 period.

The empirical analysis was undertaken in three steps. In the first step,
the importance of CRE electricity production in predicting CO2 emissions was
assessed by means of the permutation feature importance algorithm. Further-
more, the nonlinear relationship between realized electricity production from
CRE sources and predicted emissions was identified through accumulated local
effects (ALE) plots. From the results, run-of-river hydroelectricity proved to be
the most important feature among the three CRE sources for predicting emis-
sions, followed by wind energy. Solar photovoltaics was shown to be of marginal
importance in respect of predicting emissions. Next, the predictive impact of
CRE electricity production potential (as proxied by climate-derived energy in-
dicators) on CO2 emissions was quantified. The results demonstrated that an
increase in the share of energy from CRE sources–under a scenario where the
maximum possible electric energy is generated from climate variables–would
have been associated with a statistically significant decrease in CO2 emissions
from electricity production over the study period. Ultimately, four hypothet-
ical CRE production scenarios were considered and the optimal mix of CRE
sources for minimizing emissions under each scenario was determined. The find-
ings confirmed greater relative importance of run-of-river hydroelectricity and
wind energy within the CRE package with regard to the reduction of predicted
CO2 emissions. This step was complemented by the identification of optimal
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CRE mix for reducing intermittency of CRE electricity production. This com-
plementary analysis found further evidence for a higher share of run-of-river
hydroelectricity in the CRE mix.

The findings of this research, while exploratory, can have important impli-
cations for renewable energy development and management in France, since
they provide some support for the conceptual premise that replacing carbon-
intensive energy sources with renewable ones reduces carbon emissions from
electricity generation. Additionally, the findings cast a new light on the relative
importance of each CRE source with regard to emissions and intermittency re-
duction in the electricity sector. Together these results might prove enlightening
for policymakers who decide which renewable energy infrastructure investments
should be given priority.
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ADEME (2015). Un mix électrique 100% renouvelable ? Analyses et optimisations. URL:
https://www.ademe.fr/sites/default/files/assets/documents/mix-electrique-rappo

rt-2015.pdf accessed on 14 February 2022.
ADEME (2018). Trajectoires d’évolution du mix électrique 2020-2060. URL: https://libr
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