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Abstract

The aim of the paper is the assessment of the effects of climate risk on inter-
est rates by implementing a new methodology that we called Benchmark Curves
Calibration approach (BCC for short), which is coherent with a forward-looking
evaluation based on climate scenarios. The BCC approach is applied to a climate
version of Vasicek model, whose calibration is based on the setting up of benchmark
yield curves affected by an exogenous variation (depending on climate scenarios and
drivers’ correlations), which allow to propagate the effects by a reverse bootstrap-
ping. The empirical analysis performed shows the movements of the term structure
whose dimension reflect the variation in uncertainty and risk perceived by the mar-
ket. The BCC approach is actually discovered as an useful policy tool, able to
facilitate the market’s transition toward the aimed EU goals.

1 Introduction

Currently, it is clear that climate change is affecting our entire world. Numerous evi-
dences show that the atmosphere, the oceans, the cryosphere and the biosphere, have
all changed largely due to the human influence in the past years. It is unequivocal that
anthropogenic activities led to a constant rise in well-mixed greenhouse gas (GHG) con-
centrations [6]. There is no denying that the atmosphere is significantly warmer and the
climate is changing over the years. And this comes with consequences. Extreme weather
events are more frequent and severe, causing damages, destruction and, subsequently, fi-
nancial losses that propagate to the overall economy. Governments and institutions have
already started to take actions to limit greenhouse gases and to encourage the transi-
tion to a low-carbon economy. However, this passage must be handled with care. The
adaptation and mitigation policies should guide society towards a smooth restructuring
of market’s functioning. This is so to avoid the repercussions of a late and abrupt tran-
sition, which instead could potentially lead to a substantial repricing of climate-related
risks. Determining the impacts of climate risk on the financial system is a pressing and
prominent issue.

Climate risks are recognized as potential drivers for structural changes [14]. From a
market risk perspective, climate factors can significantly affect the value of financial assets.
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They might reshape or disclose new information about upcoming economic circumstances
and the price of real or financial assets. This would lead to negative price shocks and
an increase in volatility for traded assets. Climate change may even cause a disruption
in asset correlations, which might potentially reduce the efficiency of hedges and make
it more difficult for banks to properly manage their risks. However, the possibility of
unanticipated price shifts may be diminished if climate risk has already been factored in
[4]. Changes resulting from the transition might affect borrowing costs and cause a sudden
revaluation of financial assets. For example, market investors could reward borrowers who
they think will be robust throughout, or may benefit from, the shift away from a carbon-
intensive economy. They may even raise the risk premiums for borrowers with high carbon
footprints [4]. Despite the uncertainty of the outcomes, it is clear that in the future there
will be a mixture of physical and transition risks.

Until now, it is not clear the likelihood, the methodology or the degree at which
markets consider the climate as a variable in the pricing of financial assets [4]. The
lack of granular data to facilitate quantitative research is one of the major obstacles
to identifying climate risk. Standard macroeconomic, financial market, and supervisory
reporting data must be combined by central banks and regulators with the latest climate
information [15]. Prudential supervision is still at an early stage for the inclusion of climate
factors in the system. Nevertheless, in recent times, different authorities started to work
in that direction, making some significant advances. They are progressively elaborating
new methods and instruments to evaluate the financial risk of climate change, both for
physical and transition risk [14].

There are initiatives that are trying to tackle relevant data gap issues and provide
reliable disclosures to help the identification of climate risk as financial risks. Notwith-
standing these efforts, taxonomies are yet incomplete. In the future, it will be necessary
to have climate-data availability and to develop efficient market methods to evaluate the
forward-looking obligations. To enhance the results of the assessments, there must be
more concern about the second-round effects and the possibility of non-linearities dur-
ing the modelling phase. Furthermore, it should be studied more in depth also the link
between the risks and the financial system, in particular identifying all relevant physical
touchpoints; the measures adopted by financial and non-financial corporates; the mitiga-
tion of risks in lending with collateral and in insurances; the interaction among acute and
chronic physical risk drivers [8].

The existing research develops mostly on the effects of climate risk on the credit risk
side, while the market risk is more neglected. The literature puts emphasis on specific mar-
ket consequences, macroeconomic top-down analyses or sectors of particular economies.
Financial markets are trying to rapidly incorporate climate-related risks, but this has
not yet resulted in a materially significant difference, leaving room for future substantial
repricing. Numerous researchers have looked into the issue of a carbon premium in fi-
nancial markets, but the evidence is at best conflicting as to whether or not climate risk
is completely factored into either the physical risks or the transition risks side [8]. The
effects of climate-related risks on the fixed income market are examined only by a limited
number of publications. Nonetheless, it would be beneficial to concentrate on the climate
influence on bond prices to foresee the impact of climate policies on financial markets and
financial stability as well and how they interact. In the literature, a particular field for
studying the implications of physical risks in the market is the one related to municipal
bonds. This is because municipalities, differently from firms, cannot relocate in case of
increasing climate change outcomes. Therefore, it is expected that the debt of those mu-
nicipalities particularly exposed to physical risks, such as the rise of sea levels, is traded
at a significant discount due to the higher riskiness. In this regard, relevant research was
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made in [20], where it is demonstrated that, when issued, the municipal bond yields are
greater for those US counties that have a higher exposure to sea level rise. His findings
on municipal bonds suggest that, actually, the market prices climate risk for long-term
securities. The effects are however small and, in the short term, there are no significant
differences in municipal bonds exposed to climate risk. In a related work [12], the authors
find that the effect of sea level rise on the yields is equivalent to a 3-8% reduction in the
present value of the long-run cash flows of the local government. The differences in the
yields are small but statistically significant. Analysis by BlackRock Investment Institute
[10], on the other side, implies that investors in general do not require a climate risk
premium for municipal bonds.

Although some of the theoretical mechanisms through which physical and transition
risks may influence financial stability are already illustrated by the literature, more re-
search is needed. Given the increasing society’s awareness, we develop the idea of assessing
the impacts of climate-related risk in the broad financial framework of the fixed income
market. Being climate risk a possible cause of structural change as it drives the sentiment
of consumers, investors and policymakers, it can reshape all the fundamental variables
at the basis of the economy. Due to the forward-looking nature of climate change, we
expect that the long-term expectations on interest rates will provide some proof of this
connection. In particular, the purpose of this paper is to identify a theoretical model
able to introduce a climate factor inside the term structure of interest rates, coherent
with real climate change scenarios and able to be calibrated with a forward-looking per-
spective. Hence we propose a new methodology and apply it to the climate version of
the two-factor Vasicek model, where one of the factors corresponds to a climate change
variable. Although it is unusual to use a non-financial item inside the model, this element
of novelty enables the estimation and measurement of climate risk in interest rates. In
our specific case, we will examine the greenhouse gas emissions and temperature rise.
Since their consequences will be more pronounced in the long term, an analysis based
only on past information would not satisfy the need for a forward-looking view. Following
this reasoning, we avail of scenarios that estimate the evolution of climate under different
underlying hypotheses to evaluate the future influences. To incorporate it inside the yield
curve, the BCC approach suggests to build a set of benchmark curves that reflect the
variation of the zero-coupon rates due to climate risk. The distortion is introduced only
at some fixed points, therefore, to spread the effect all over the yield curve, we revert the
normal process of bootstrapping to find the new implied rates. Our model can then be
finally calibrated on each benchmark curve to find the respective parameters.

The paper is organized as follows. In section 2 we describe the BCC approach finalized
to recover the benchmark curves and point out their role in the calibration process. Next,
section 3, is devoted to the application of the BCC methodology to the climate-Vasicek
model, where one of the factors is a climate change variable. Section 4 details the im-
plementation of the model in the EU market and discusses the results obtained. Finally,
section 5 draws a number of conclusive points.

2 The Benchmark Curves Calibration approach: cli-

mate scenario-based analysis and reverse bootstrap-

ping

In this paper, we introduce a new methodology to assess the impact of climate change
on market risk: the Benchmark Curves Calibration approach (BCC for short). More

3



precisely, by adopting a forward-looking approach, we focus on the possible movements of
the term structure of interest rates under certain pre-specified climate scenarios. This is
done to emphasize the long-term effects that climate risk has, although it is just starting
being factored in the market. We rely on the latest IPCC’s scenarios [18] that forecast
the future global GHG emissions and consequent mean temperatures. The predicted
variations in these two variables are used to distort the yield curve, which is recovered
following the multi-curve setting [2]. The BCC approach employs them in conjunction
with their correlation with the time series of quoted interest rates. Since the distortions are
only introduced at some pre-defined scenario-dependent points, we propagate the effects
along the yield curve by reverting the process of bootstrapping. This procedure allows
us to retrieve the so-defined benchmark curves that represent the curves on which the
calibration of a climate model is performed. The whole procedure of the BCC approach
is described in detail in the following.

2.1 Climate scenarios

Central banks and supervisors employ scenario analysis as an instrument to evaluate the
possible future impacts of climate change on the macroeconomy, financial system and
reliability of financial firms [14]. It is not a simple task to measure those impacts. The
uncertainty of the path of climate change makes it more involved, together with the
complex mechanism of transmission channels and the right integration of primary and
secondary effects. The scenario analysis tool is however flexible enough to account for the
forward-looking feature of the climate change risks. It offers a methodological approach
to structure assumptions about many possible futures in order to investigate potential
dangers [14]. To underline the impact of climate threats on the financial system and
institutions, the analysis requires speculative but realistic scenarios [8].

Among practitioners, climate scenario construction commonly relies on the works con-
ducted by the Intergovernmental Panel on Climate Change (IPCC), which discloses pe-
riodic scientific assessments on climate change, its effects and risks, and offers possible
alternatives for adaptation and mitigation. Recently, it was published the Sixth Assess-
ment Report (AR6), with the first part dealing with the last physical understanding of
the climate system and climate change. The work provides estimates about future paths
presenting different scenarios that we will use to understand the possible consequences of
climate change on interest rates. Scenarios picture potential sets of decisions taken by
humanity, without any given likelihood if some actions are more probable than others.
Inputs of simulations are future concentrations or anthropogenic emissions of radiatively
active substances [17]. The scenarios studied vary considering socio-economic and policy
responses that may act against emissions and the removal of CO2 from the atmosphere
or, on the contrary, that no limits are introduced and the emissions may even double
from current levels [18]. Nowadays, IPCC’s scenarios are a subset of the Shared Socio-
economic Pathways (SSP) framework, which can be understood as future emissions and
concentration scenarios that depend on the combination of socio-economic development
pathways with assumptions on climate change mitigation [6].

The past IPCC reports highlighted already the near-linear relationship between cumu-
lative carbon emissions and global mean warming. This finding suggests that continuous
emission of CO2 will bring on additional warming and changes in all parts of the environ-
mental framework, notwithstanding any particular situation or pathway. Furthermore,
the same amounts of cumulative CO2 emissions could yield slightly different levels of
warming over time. For example, quick emissions followed by drastic cuts and likely net
negative emissions cause higher maximum warming and faster warming rate compared to
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the same cumulative CO2 emissions spread over a longer period [6].
The original report [6] presents five illustrative SSP scenarios and, together, they

represent a range of plausible trends, societal and climatic futures. They can be detailed
as follows:

• SSP1-1.9 (Paris Agreement goal): it presumes very strong mitigation actions in line
with the aim of the Paris Agreement. Therefore, warming reaches approximately
1.5C above 1850-1900 levels in 2100 after a slight overshoot. As regards emissions,
the projection (see Figure 1) shows that the implied net zero CO2 is reached around
the middle of the century.

• SSP1-2.6 (sustainable pathway): it entails stringent air-quality mitigation policy,
which leads to a fast decrease in particle emissions. In fact, it assumes that the
emissions of CO2 reach the implied net zero in the second half of the century.
Warming stays below 2.0C relative to the pre-industrial level.

• SSP2-4.5 (middle-of-the-road): until the middle of the 21st century, CO2 emissions
remain almost the same as today’s level. It stands out from a pure ’no-additional-
climate-policy’ reference scenario, reaching 2.7C of warming by 2100.

• SSP3-7.0 (regional rivalry): it indicates slow improvements since the level of pollu-
tant emissions keeps staying at the current pace. Therefore, CO2 emissions roughly
double from current levels by the end of the century. The scenario assumes reduced
air-pollution control and hence higher aerosol emissions.

• SSP5-8.5 (fossil fuel-rich development): this is, with respect to the others, the
worst-case scenario. It assumes no additional climate policy, where CO2 emissions
almost double already by 2050 and temperature increases by approximately 4.0C
relative to the pre-industrial level by the end of the 21st century.

2020 2040 2060 2080 2100
−20

0

20

40

60

80

100

120

140

Years

C
ar

b
on

d
io

x
id

e
(G

tC
O

2
/y

r)

SSP1-1.9
SSP1-2.6
SSP2-4.5
SSP3-7.0
SSP5-8.5

Figure 1: Future annual anthropogenic CO2 global emissions scenarios. Adapted from Figure

SPM.4, Summary for Policy Makers (IPCC 2021).
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In Figure 1, the annual global anthropogenic emissions of CO2 from all sectors for
each scenario are plotted. The period considered goes from 2015 to 2100. In the lower
part of the graph emerges the scenarios that imply a decrease in emissions, with SSP1-1.9
and SSP1-2.6 reaching even negative values after the middle of the century. In the upper
part, instead, we find the worst-case scenarios (SSP3-7.0 and SSP5-8.5) that entail no
climate policy mitigation for the abatement of CO2 in the future years. Emissions are
expressed in terms of Giga tonnes of carbon dioxide (GtCO2). In Table 1, we report
instead the temperature rise in C for each SSP scenario. The increments are estimated
for three periods, starting in 2021, 2041 and 2081. They represent the effects in the near
term, mid-term and long term, respectively. In this way, it is possible to measure the rise
in temperature until the end of the century at different middle points. The changes are
expressed using two reference periods: the pre-industrial one, which goes from 1850 to
1900, and a more recent one that considers the global average mean from 1995 to 2014 as
basis. The estimates represent the central value of a confidence interval at 95%.

Table 1: Scenarios of global surface average temperature change. Adapted from Table 4.5,

section 4 (IPCC 2021).

TEMPERATURE SCENARIOS (C)

Time Period Basis SSP1-1.9 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

2021-2040
1995 - 2014 0.6 0.6 0.7 0.7 0.8

1850 - 1900 1.5 1.5 1.5 1.5 1.6

2041-2060
1995 - 2014 0.7 0.9 1.1 1.3 1.5

1850 - 1900 1.6 1.7 2.0 2.1 2.4

2081-2100
1995 - 2014 0.6 0.9 1.8 2.8 3.5

1850 - 1900 1.4 1.8 2.7 3.6 4.4

2.2 Yield curve construction under the modern multiple-curve
framework

The yield curve is a fundamental object in the market due to its relevance and it is at
the basis of this research. To derive it, the preferred market method is the exact-fit [2].
The purpose is to exactly reprice N selected market instruments using the yield curve
fixed on a time grid, i.e. a predetermined vector of dates named pillars, at which the
bootstrapping procedure returns a value. In this case, the technique is called bootstrap
since the implementation is recursive, meaning that the curve is constructed step-by-step
using the pricing formula of one instrument per time for increasing maturities. Beyond
the values fixed at the i-th pillars, through interpolation, it is possible to recover the
intermediate values of the curve [[2], [13]].

The global subprime credit crunch crisis started in 2007 and the Eurozone sovereign
debt crisis of 2009-2012, which triggered a new regime of low and even negative rates,
have irreversibly modified the functioning of the financial markets as they were previously
known. Quoted instrument prices started to show that the relationship between Libor
rates with different maturities should be modelled separately and, for the first time,
the spread between Libor rates and the swap rates on the Overnight Indexed Swaps
became significant [13]. This does not mean that before the Basis Swaps spreads were
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zero, they were just sufficiently small to be safely neglected [1]. Therefore, in the post-
crisis setting, it is recognized that the counterparty risk, i.e. the risk of failure of a
counterparty to fulfil its obligations, and the funding risk, i.e. when the lack of liquidity in
the market causes a risk of excessive costs of funding a position, affect the interbank rates.
This effect spreads consequently all over the fixed-income market since the underlying
rates of most fixed-income instruments are exactly those kind of rates [1]. These new
aspects contributed to the diffusion of the multiple-curve framework. An essential point
to emphasize in this setting is the requirement of homogeneity : interest rate derivatives
with a given underlying rate tenor must be priced and hedged using vanilla interest rate
market instruments with the same underlying. In this context, it is fundamental to
coherently construct and use the discounting curve. By no-arbitrage, the present value of
any future cash flow must be unique and, consequently, the discounting must be the same
for all the curves. Building the correct discounting curve implies being consistent with
the funding of the selected quoted bootstrapping instruments, which are mainly traded
OTC. Since they are traded between counterparties under bilateral collateral agreements,
or with central counterparties, with daily margination at the overnight collateral rate,
the coherent instruments for the discounting curve construction are the Overnight Index
Swaps [2]. This is the so-called funding requirement.

To sum up, we set the standard procedure followed by the market to develop the
multiple interest rate yield curves [2]:

1. Choose the appropriate funding rates, select the corresponding market instruments
and build the unique discounting curve using the usual single-curve approach. It
will be derived from the OIS.

2. Pick a set of homogeneous vanilla interest rate instruments in their underlying rate
with increasing maturities, one set for each different tenor considered.

3. Construct the FRA curves for each tenor using the selected instruments’ market
values and their bootstrapping rules, using the unique discounting curve obtained
in point 1.

4. Recover the relevant FRA rates and the corresponding cash flows from the FRA
curve, always observing the homogeneity principle.

5. Compute the relevant discount factors from the discounting curve with the proper
funding features.

6. Sum the discounted cash flows to obtain the prices.

2.3 Climate factor distortion

After recovering the relevant market yield curve, we follow the hypothesis under the
IPCC’s scenarios to build a method that allows us to analyse the future possible impacts on
it relying on climate change variables. We know that, until recent years, those effects were
not considered a major issue. This is because climate risk is perceived in a more disruptive
way in the long-term, while in the short-term it does not rise the same concerns. In fact,
the worst impacts have not yet happened and will not happen even in the next few years.
Having said this, it is clear that we have to work coherently with the forward-looking
nature of climate risk. At first, we can start relying on historical data to realistically
size this effect. Notice that, using past information, we should however obtain a slightly
optimistical and biased view of what will happen in the future. We use Pearson’s ρ
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correlation between the time series of the chosen interest rate instruments and the climate
change variable. In this way, we recover the dependence among the two variables that
will govern the shift that we introduce. Moreover, we compute the percentage change
variation of the climate variable under the assumption of a specific scenario. To modify
the outcome of our original market curve, we thus introduce the shift at the appropriate
zero-coupon rate. More formally, we have

∆R(t, Ti) = R(t, Ti) +R(t, Ti)× ρi,k ×∆scenariok,j, (1)

for R(t, Ti) defined as the market zero rate with maturity Ti at time t, ρi,k as the Pearson
correlation between the instrument with maturity Ti and the climate change variable k,
and ∆scenariok,j as the variation in k due to the selected scenario j.

2.4 Reverse bootstrapping

Since we introduce the fixed variations only at specific points in time, we have to propagate
the changes to all the rest of the curve in a proper manner. Accounting for the fact that,
today, the rates are fixed, we can modify only those that are quoted in the future, ideally
from tomorrow. We thus should restore the yield curve by keeping some points fixed (the
values at today and the exogenous shifts), which must be linked in the smoothest possible
manner. We could rely on some interpolation scheme, however, connecting just few points
in a long period is a huge simplification. Therefore, to absorb the distortions over time,
we use the idea of reverse bootstrapping, meaning that we invert the usual bootstrapping
procedure such that we obtain the previous value of the zero coupon bond instead of the
following one. In this manner, we can modify all the nodes depending on the shifts we
introduce in a more reliable fashion.
The distortion is introduced into the zero-rates so, to spread the effects, we have to
compute them for each different scenario as follows

∆P (t, Ti) = exp

{
−∆R(t, Ti)τ(t, Ti)

}
.

Differently from the bootstrapping procedure, we start the process from the last (future)
value and turn back until the most recent value. Following [2], we retrieve the inverted
formulas of the instruments used to build the yield curve to recover the previous value, i.e.
the value at time Ti−1. Therefore, we obtain for Depos, FRA and IRS rates, respectively,
the distorted zero-coupon bond prices as:

∆P (t, Ti) =
1

1 + ∆RDepo(t;Ti)τL(t, Ti)
, (2)

∆P (t, Ti−1) = ∆P (t, Ti)(1 + ∆RFRA(t,Ti)τL(Ti−1, Ti)), (3)

∆P (t, Ti−1) =

[
∆RIRS(t;Ti)Ac(t;Ti)−

i−1∑
α=1

Pc(t, Tα)F (t;Tα−1, Tα)τL(Tα−1, Tα) + Pc(t, Ti)

]
×∆P (t, Ti)

Pc(t, Ti)
.

With the above formulas, we can set an optimization problem subject to some constraints:
the starting point P (t, t) = 1 and the distorted zero-coupon bonds. Moreover, we have
to make an additional assumption. The forward rates of IRS do not change due to the
distortions. This is to assure that the numerical solution propagates the effects of the
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climate change variables in time, otherwise they would be absorbed only in the years near
the introduction of the distortion. Once the optimization is done, we can retrieve the
rates and interpolate them to find the entire benchmark curve for each scenario.

2.5 Calibration: least squares optimization

Given a short-rate model, the idea of calibration is to compare the market zero-coupon
rates to the model zero-coupon rates. Therefore, we first recover the corresponding zero
rates from our benchmark curves, which we simply denote as R(t, Ti). We then retrieve
the set of model’s parameters Θ by minimizing the sum of the squared residuals between
observed and predicted values. The objective function corresponds then to

min
Θ

n∑
i=1

(
R(t, Ti)− R̄(t, Ti)

)2

,

where the zero rate from the model R̄(t, Ti) is given by the logarithm of the zero-coupon
bond. Usually, the model’s parameters are calibrated on the time series of the interest
rates and then used to predict the short rates. However, we slightly modify this procedure
due to our particular setting, while preserving the concept of calibration. In fact, we
cannot rely on past data, since the historical parameters will not capture the distortions
that we introduced in the benchmark curves and are not able to replicate them. We
thus have to perform a calibration on the future values of the zero rates to recover the
right parameters for each different scenario. This is exactly the reason why we derived the
benchmark curves. In addition, to retrieve the value of the model’s parameters, we have to
deal first with other unknown factors. As a matter of fact, the short rate and the climate
change factors y and c are stochastic but, since we base our calibration on the future,
we have to randomly simulate their values and use them as if they were known. Being
a random estimation, to obtain reliable results we have to simulate the values a large
number of times, n, and find the model’s parameters as the mean of all the parameters
recovered in each simulation. We thus use a similar idea to that of the Monte Carlo
method, i.e that repeated random sampling allows recovering good numerical results on
average.

3 The BCC approach at work: an affine climate-

factor model

The calibration phase of the BCC approach is fundamental since entails the selection of
an appropriate short rate model. Our aim is to retrieve the parameters of a model able
to replicate the shape of the benchmark curves. This method relies on the assumption
that interest rates have a component linked to climate change, we can therefore express
the short-term interest rate r(t) as a linear combination of two variables:

r(t) = c(t) + y(t), (4)

where the factor representing the climate change is denoted by c, while y denotes all the
other components that define interest rates.
The above expression allows us to rely on affine term structure models, which conve-
niently link the logarithm of bond prices to spot rates through a linear function. In their
simplest version, i.e. the one-factor case, the zero coupon price can be indeed expressed
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by considering a class of compatible models (F, µ, σ) with F defined as an exponential
affine equation [11], therefore:

F (t, T ;x) = exp
{
A(t, T )−B(t, T )x

}
, (5)

for which A and B are C1 functions on [0,∞). By computing the partial derivatives and
solving the term structure equation, we obtain

A′(t, T )− (1 +B′(t, T ))r − µ(t, r)B(t, T ) +
1

2
σ2(t, r)B2(t, T ) = 0. (6)

The usual boundary value for zero coupon bonds F (T, r;T ) = 1 implies that{
A(T, T ) = 0

B(T, T ) = 0

The existence of functions A and B that solve equation (6) is usually guaranteed by
choosing µ and σ2 as affine functions of r(t) [11]. By doing so, equation (6) becomes a
separable differential equation for the unknown functions A and B. Assuming that µ and
σ have the following form {

µ(t, r) = α(t)r(t) + β(t)

σ(t, r) =
√
γ(t)r(t) + δ(t)

the functions A and B satisfy the systems{
B′(t, T ) + α(t)B(t, T )− 1

2
γ(t)B2(t, T ) = −1

B(T, T ) = 0
(7)

{
A′(t, T ) = β(t)B(t, T )− 1

2
δ(t)B2(t, T )

A(T, T ) = 0
(8)

Notice that equation (7) is a Riccati equation that does not involve A. However, we are
interested in the multi-dimensional setting of affine models, especially in the two-factor
case. Therefore, the two variables that describe the short rate as presented in equation
(4) must be correlated state variables that each follows its own stochastic differential
equation, expressed in general terms as

dc(t) = ν(t; c)dt+ ρ(t; c, y)dŴc(t),

dy(t) = ν(t; y)dt+ ρ(t; y, c)dŴy(t),

where the diffusion coefficient entails the covariance between the sources of uncertainty.
Applying the Itô’s theorem to retrieve the differential dynamics of the zero-coupon bond
price, we recover

dP (t, T ; c, y) =

(
∂P

∂t
+
∂P

∂c
ν(t; c) +

∂P

∂y
ν(t; y) +

1

2

∂P

∂c∂y
ρ(t; c, y) +

1

2

∂P

∂y∂c
ρ(t; y, c)

)
dt

+
∂P

∂c
ρ(t; c, y)dŴc(t) +

∂P

∂y
ρ(t; y, c)dŴy(t).

We obtain then the partial differential equation under the risk neutral measure as:

∂P

∂t
+

(
ν(t; c)− λcρ(t; c, y)

)
∂P

∂c
+

(
ν(t; y)− λyρ(t; y, c)

)
∂P

∂y
+

1

2

∂P

∂c∂y
ρ(t; c, y) +

+
1

2

∂P

∂y∂c
ρ(t; y, c)− cP (t, T )− yP (t, T ) = 0,
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where λc and λy represent the market price of risk.
The zero coupon bond is then a function of two underlying risk factors, one of which rep-
resents the climate change risk, and can be expressed as an exponential affine expression:

P (τ ; c, y) = eA(τ)−Bc(τ)c−By(τ)y, (9)

where we use τ to indicate the time to maturity, i.e. T − t, and the factors y and c
are written without their dependence on time just to ease the notation. This is the
generalization of an affine climate-factor model, which can then be adapted to a specific
short rate model.

3.1 The Climate-Vasicek model

In order to further specify the model, we express it as a Climate-Vasicek model, i.e. as
a two-factor affine term structure with a climate change component using the dynamics
of the Vasicek short-term rate model. In fact, it turns out that it satisfies the necessary
affinity conditions [11] and can be easily adapted to a climate version.
In general terms, the differential equation consists in an Ornstein-Uhlenbeck process with
constant coefficients [21] for a proper choice of the market price of risk, that is

dr(t) = κ(θ̄ − r(t))dt+ σdW (t), r(0) = r0, (10)

where:

• θ̄ is the long term mean level, which means that all the future trajectories of the
rate will evolve around that term;

• κ is the speed of reversion, i.e. the velocity of the long term mean level that will be
reached, and it should be positive;

• σ is the instantaneous volatility that measures the amplitude of randomness intro-
duced in the model.

The choice to employ this model is due to its well-known characteristics. The time-
homogeneous structure of the model allows only for constant coefficients, which is con-
venient when retrieving analytically the price of bonds even in the two-dimensional case.
However, this could be also seen as a disadvantage since few constant parameters cannot
account for all the features and shapes of yield curves. In this model, the rate r(t) can
be negative with positive probability. Although in recent times the interest rates turned
positive almost everywhere, until no long ago the majority of the economies were under
the NIRP regime. The short rate is also mean reverting. It means that the expected
rate will tend to the value of θ̄, which is indeed the long term average rate, for t that
approaches infinity. Another interesting quantity to consider is the long term variance
σ2/(2κ), which comes from considering the variance as t → ∞. If we consider the limit
for T →∞ of the zero-coupon rate, we have

R(t,∞) = lim
T→∞

R(t, T ) = θ̄ − σ2

2κ2
.

It indicates that, as the time to maturity increases up to infinity, the yield curve will
converge to (or eventually deviate from) the value of the long-term mean influenced by
the volatility and speed of reversions.
Following [5], we can compute the partial derivatives of equation (9) expressing the drift
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and the diffusion coefficients of the climate two-factor case considering the Vasicek dy-
namic:

µc = κc(θ̄c − c(t)), ρcy = σcy

µy = κy(θ̄y − y(t)), ρyc = σyc

where θ̄i = θi− σiλi
κi

for i = c, y. Putting all together in (9), we obtain the following partial
differential equation:

−A′(τ) +
σcy
2
Bc(τ)By(τ) +

σyc
2
By(τ)Bc(τ)− κcθ̄cBc(τ)− κyθ̄yBy(τ) +

−
(
1−B′c(τ)− κcBc(τ)

)
c−

(
1−B′y(τ)− κyBy(τ)

)
y = 0.

We split the above equation into a series of ordinary differential equations to be able to
solve them analytically. {

B′c(τ) + κcBc(τ) = 1

Bc(0) = 0

leads us to recover

Bc(τ) =
1

κc
(1− e−κcτ ). (11)

Following the same reasoning, we obtain

By(τ) =
1

κy
(1− e−κyτ ). (12)

Then we are left to solve the following system, i.e.−A
′(τ) +

σcy
2
Bc(τ)By(τ) +

σyc
2
By(τ)Bc(τ)− κcθ̄cBc(τ)− κyθ̄yBy(τ) = 0

A(0) = 0

In this case, we integrate the expression to find the function A(τ). We can recover the
closed-form expression for A(τ), after rearranging it in a convenient order, as

A(τ) =
γc(Bc(τ)− τ)

κ2
c

− σ2
cB

2
c (τ)

4κc
+
γy(By(τ)− τ)

κ2
y

−
σ2
yB

2
y(τ)

4κy

+
σcy

2κcκy

(
τ −Bc(τ)−By(τ) +

1

κc + κy

(
1− e−(κc+κy)τ

))
,

where

γc = κ2
c

(
θc −

σcλc
κc

)
− σ2

c

2
,

γy = κ2
y

(
θy −

σyλy
κy

)
−
σ2
y

2
.

Putting all together in equation (10), we obtain the complete analytical version of the
Climate Vasicek model with two-factors, one of which represents the climate change risk.
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4 Model implementation and results discussion

In this section, we apply the BCC approach in the EUR market. Our aim is to find
out and study the effects of each climate scenario disclosed by IPCC on the rates in
the Eurozone framework. Therefore, following the methodology described above, we first
recover the yield curve quoted in the market under the multi-curve framework. This curve
is used as a basis for the construction of five benchmark curves, each one incorporating
a future different path of the underlying climate change variation. The distortions at
three different points in time are introduced in the original curve by adding an adequate
variation to the zero rates, which depends on the scenario selected and on the correlation
between interest rates and the climate change variables. To propagate the impact to the
entire curve, we reverse the procedure of bootstrapping. After retrieving the benchmark
curves, it is time to calibrate the parameters of the Climate Vasicek model by minimizing
the squared difference between the original rates and the model rates. At this point, it
is possible to evaluate the results and draw interesting conclusions, insightful also from a
policy stability point of view.

4.1 Variables selection

4.1.1 Interest rates

We recover from the Datastream-Eikon database the daily time series of the interest rates
instruments with 6 months tenor as underlying, which is the relevant one in the Euro
market, from January 1, 2015, to December 31, 2021. We opt for this 7-year period
because it covers two major interesting events that are related to climate change: the
Paris Agreement and the Covid-19 pandemic. The first one is a milestone for tackling
climate change by countries around the world and notably dragged the attention of the
public to the consequences of no intervention in the short term. The second one, instead,
was a disruptive event from many points of view, leading to economic and environmental
consequences. It rose awareness about the human impact on nature and the importance to
preserve the ecosystem. We expect that these two events influenced the market sentiment
towards a more climate-friendly society. Accounting for the liquidity of the instruments,
we select the Deposit at 6 months, the FRAs with 6 months expiry (in particular, 1x7,
2x8, 3x9, 4x10, 5x11, 6x12, 12x18) and the IRS (from 2 to 60 years) with fixed leg tenor 1
year and floating leg 6 months. Analysing the different time series, we find missing data
and outliers only in the IRS quotes. To preserve the reality of data, we substitute their
values with the average mean between the quote of the day before and the day after the
outlier value.

4.1.2 Climate change variables

Greenhouse gas emissions. The first climate change variable that we consider is the
amount of greenhouse gases’ air emissions. Due to its primary role in causing physical
and transition risks, it is commonly used as a driver for the construction of future climate
scenarios and policy makers act directly on its limitation.
The Eurostat Database publishes quarterly data of air emissions accounts for greenhouse
gases by NACE Rev. 2 activity. Data are recovered quarterly for the period from January
1, 2015, to December 31, 2021, expressed in thousand tonnes and as a collection of CO2 and
N2O, CH4, HFC, PFC, SF6 and NF3 in CO2 equivalent. The countries considered are the
27 members of the European Union. We select the total emissions of all NACE activities
plus those of the households. Since we have quarterly data but privilege daily frequency,
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we assume that emissions are constant inside each quarter. Hence, each quarter’s data is
divided by the number of business days in it to obtain the daily emissions. We are aware
that this is a strong assumption, emissions are hardly constant over such a long period.
Moreover, in this way, we do not account for the change that emerges during weekends
or holidays. Despite this, we can still get an idea of the real path of GHG emissions.

Surface mean temperature. Another essential variable in the climate change context
is temperature. High and increasing levels of GHG concentration in the atmosphere result
in a rise in the global surface temperature, which in turn causes more extreme weather
events. For this reason, it is usually used as a proxy for measuring the physical risks of
climate change.
The National Oceanic and Atmospheric Administration (NOAA) website provides the
access to the National Climatic Data Center’s archive of global historical weather data.
From that database, we collect the daily average, maximum and minimum temperatures
for each meteorological station of the members of the European Union. The time series
collected refers again to the period from January 1, 2015, to December 31, 2021. Each
state has a different number of observations due to the size of the country, the number of
stations and missing values. For these reasons, we follow a common method to find the
average temperature in every single country.

To deal with missing mean temperature data, we adopt the following procedure:

1. If both minimum and maximum temperatures are available, we compute the average
temperature as the mean between them.

2. If there are still more than 365 missing observations (1 year out of 7 of data) of
average temperature for a station, we remove it entirely.

3. If there are missing days of data recording, we add the related values propagating
the last valid observation forward to the next available.

The data is then sorted by date in order to compute the average across stations. Once
this is done for every country in the dataset, it is possible to obtain a European daily
average by taking the weighted mean across each day and country. The weights are given
by the surface of the country, which is retrieved from the Eurostat Database. Finally,
the weighted daily average temperature of the entire EU is converted from Fahrenheit to
Celsius degrees.

Carbon allowances. Carbon allowances are the main tool to limit GHG emissions,
based on a cap-and-trade mechanism. We can consider them representative of the as-
sessment of the risk of the transition. As we know, it is a particular market and we will
not consider carbon prices as a climate variable in our model. However, we investigate
the prices in connection with emissions and interest rates. We expect to find dependence
between these variables that can be used to support the effects of climate change that we
find out.
We collect daily data about carbon allowance prices in the Euro market from the Datastream-
Eikon database. In particular, we recover the EEX EUA spot prices for the period January
1, 2018, and December 31, 2021. Hence, the data refers to the last 3 years of phase 3,
including the Covid-19 crisis, and the initial part of phase 4. The market was under
particular stress in that period, therefore the information may be biased. For this reason,
we have to be careful about the interpretation of the numbers related to such a variable.
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4.2 Analysis of the dependences

To investigate the effects of climate change on interest rates, a good starting point is
analysing their past relationship expressed as Pearson’s ρ. Being this the ratio between
the covariance of two variables and the product of their standard deviations, we have first
to deal with the multiplicity of interest rates collected. Indeed, for the latter, we have
as many time series as the number of instruments we selected. We proceed by taking
the average across the time series of the rates. In particular, since the IPCC’s scenarios
predict values almost every 20 years, we compute three different averages: one using all
the instruments with maturity from 6 months to 20 years, one for the quotes with maturity
until 40 years and one for the remaining maturities until 60 years.
In Table 2, we report the Pearson correlation coefficients we recover for the three interest
rates averages. The correlation between emissions and interest rates is relatively high and
positive. This means that when emissions increase, also interest rates increase. Despite
this, we should not confuse the idea that correlation means causation. In fact, it is more
an indirect effect as we know that emissions have an influence on the economy, which
propagates to the financial markets. As expected, the correlation is higher for the longest
maturities, even if the difference is small. We interpret this positive trend as a sign of
the increasing relevance of climate change as time passes by. As regards the relationship

Table 2: Pearson correlation coefficients between interest rates and emissions and interest
rates and mean temperature for the period 2015-2021.

VARIABLES EMISSIONS TEMPERATURE

INTEREST
RATES

(average)

6M - 20Y 0.5147 -0.0810

20Y - 40Y 0.5319 -0.0679

40Y - 60Y 0.5332 -0.0665

between interest rates and average temperature, the correlation coefficients are small,
very close to zero, and negative. Moreover, they decrease in time. At first, this might
look controversial and unexpected. However, we have to account for the characteristics
of this particular factor. It is a pure climate variable that cannot be directly controlled
by humans. It depends on a variety of elements, among which the most relevant is the
quantity of emission concentration in the atmosphere. Another fundamental aspect is the
time required to account for a variation. By this, we mean that the average temperature
changes over the years in a less evident way with respect to emissions. It takes decades,
or more, to account for huge fluctuations in the values. Here we consider the data from
only 7 years of observations. Despite the fact that GHG emissions decreased, the positive
effects of this reduction will be presumably visible later in the years. Being temperature
a natural variable, it is more difficult for the market to account for it. Also, in this case,
we talk about an indirect effect of temperature on the financial system. The extreme
weather events caused by the increase in mean temperature are those that actually have
an influence due to the monetary losses that they produce. However, it is harder to
account for floods, fires or heatwaves. For these reasons, we use the temperature as a
general variable in our model that synthetises the physical risk of climate change.
To analyse the effects of the two major events identified in the examined time interval, we
partition the period under investigation into three sub-periods: the pre-Covid-19 years
(2015-2019), the year of Covid-19 (2020) and the post-Covid-19 era (2021). Reducing the
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time size is dangerous because it could provide misleading interpretations, in particular
with these kinds of variables that are also characterized by a seasonal component.
The linear correlations between GHG emissions and interest rates computed considering
the sub-periods show interesting trends (Table 3). For the years immediately after the
Paris Agreement, excluding the crisis due to Covid-19, we have a positive correlation of
about 0.3 with all the interest rates averages. This is in line with the value obtained
when considering the entire period. The same is true for 2020, although the correlation
with the 6-month - 20 years average turns negative. While it could be strange at first,
we have to remember what happened. The relationship has been reversed because GHG
emissions were subject to a huge decrease due to lockdowns and the market was under
stress. This was reflected only on the nearest term because it was a temporary shock.
In 2021, the correlation turns back to the same level as the pre-Covid period. On the
contrary, the other two averages of interest rates exhibit a negative sign now. Emissions,
in fact, rose again in 2021, while interest rates stabilized. It was still a year of changes.
Consequently, it is hard to interpret if this modification of the correlations’ sign represents
a crucial moment for the future or if it is just temporary. A negative correlation in the
long term could indicate that the current market sentiment towards emissions lowers
because their effects, from 2060 onwards, will have already taken place. It is like to say
that the issues related to GHG emissions will no longer be a priority because the actions
taken today will be effective by then. In Table 4, instead, we display the results of the

Table 3: Pearson correlation coefficients between emissions and interest rates for the entire
period and for the three sub-periods.

EMISSIONS

2015-2021 2015-2019 2020 2021

INTEREST
RATES

(average)

6M - 20Y 0.5147 0.3178 -0.1614 0.3304

20Y - 40Y 0.5319 0.3098 0.3133 -0.1714

40Y - 60Y 0.5332 0.3049 0.3961 -0.2296

sub-period correlations between interest rates and the average surface temperature. The
pre-Covid-19 period and the year of Covid-19 both show a negative correlation for all
the interest rates. However, in 2020, the size of the correlation increases notably. As we
said before, it was a particular year for the market and for the climate. Despite this, the
consequences on average temperature were not so incisive as those in the market. Only
interest rates were subject to substantial change during the pandemic. The next year,
the correlations change sign, becoming positive and higher. It could be a true indication
of the effects of Covid-19. In fact, the pandemic was not only impactful on the market
because of the monetary consequences of the various lockdowns, but also on the awareness
of society. Consumers and investors started to take more into consideration the effects
of climate change. Although the transition risks are already recognized by policymakers,
less attention is directly paid to physical risks. This change in the sign of correlation
coefficients could indicate a turning point in the market sentiment. People finally realize
the negative consequences of the rise in temperature and this awareness is reflected in
the market expectations. Nevertheless, this aspect should be investigated further in the
next years to confirm the interpretation. As regards allowances, in Table 5, we find out
that for the entire period Pearson’s ρ is negative and quite high. It indicates that a
decrease in interest rates is related to an increase in the price of allowances, meaning
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Table 4: Pearson correlation coefficients between mean temperature and interest rates for
the entire period and for the three sub-periods.

TEMPERATURE

2015-2021 2015-2019 2020 2021

INTEREST
RATES

(average)

6M - 20Y -0.0810 -0.1471 -0.2437 0.1060

20Y - 40Y -0.0679 -0.1259 -0.4533 0.3090

40Y - 60Y -0.0665 -0.1225 -0.4432 0.2574

that it is costly to pollute when interest rates are lower. Accordingly, it has an inverse
relationship with respect to the one between interest rates and emissions. If the price of
allowances increases, the emissions should decrease and both these effects influence the
interest rates in a negative way. The association holds both for the pre-Covid-19 crisis
and during it. However, in 2021 the correlations’ sign change. It could be, coherently
with the interpretation we gave for GHG emissions, that the market sentiment changed
after the pandemic due to the rise in awareness. From January 2021, the fourth phase has
started, introducing new mechanisms, influences and prices on the market. Therefore,
it could be that the correlations are biased by the consequences of this new phase.

Table 5: Pearson correlation coefficients between allowances and interest rates for the
entire period and for the three sub-periods.

ALLOWANCES

2018-2021 2018-2019 2020 2021

INTEREST
RATES

(average)

6M - 20Y -0.4716 -0.7451 -0.5903 0.6381

20Y - 40Y -0.4594 -0.7273 -0.1451 0.1489

40Y - 60Y -0.4653 -0.7093 -0.0066 -0.0139

Table 6: Pearson correlation coefficients between temperature, emissions and allowances
for the entire period and for the three sub-periods.

2015-2021 2015-2019 2020 2021

TEMPERATURE
EMISSIONS

-0.6593 -0.8017 -0.6435 -0.6890

2018-2021 2018-2019 2020 2021

EMISSIONS
ALLOWANCES

-0.0813 -0.5207 0.3043 0.2964

Lastly, in Table 6, we examine the linear correlations among our climate change variables.
They are meaningful to explain the inner connections. Contrary to our expectations, the
temperature and the emissions are negatively related. This is probably because there is a
time lag between these two variables. We know that an increase in emissions concentration
causes an increase in the surface mean temperature. However, their reduction does not
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imply directly a decrease in temperature or, at least, not immediately. It takes time. This
is clear from the SSP1-1.9 scenario where, although emissions become even negative, the
temperatures still rise until a point at which they slowly start decreasing. Therefore, the
correlation coefficient is not a trustworthy measure of their relation. They are linked by
a causation effect. Additionally, the correlation between emissions and allowances is also
counter-intuitive. For the entire period, it is almost 0, which indicates a weak connection.
Nonetheless, if we split it into intervals, the reasoning becomes clearer: there is a sort
of compensation in the correlations during the analysed period. Before Covid-19, the
coefficient is negative and quite high. It correctly indicates that an increase in the price
of allowances corresponds to a decrease in GHG emissions. This is reasonable. From 2020
a weird effect starts, causing a positive correlation. The price of allowances in 2020 was
subject to a huge decrease but it sharply increased again thanks to the MSR mechanism.
Hence, part for a small period, the prices stayed stable. The same was not true for
emissions, which started to increase again after a long time and at a higher level than
before. This mismatch of the effects modified the connection between the two variables.

4.3 Bootstrapping market yield curves

We construct now the market curve, which is needed as a basis for the creation of the
modified curves under climate scenarios. In particular, we choose as reference day July
8, 2022, once the market closed, collecting all the quotes needed from the brokers ICAP
and KLIEM through the Refinitiv Eikon platform. The construction of the curves is done
using the QuantLib framework, which is an open source library used also in the real world
to model, trade and deal with risk management. We use the implementation on Python
and follow [3] as a reference for its correct usage. We also stick to the suggestions in [2]
as regards the selection of the instruments.
From now on, we will mention July 8, 2022, as today (t0), while July 12, 2022, as spot
(t0 + 2 business days).

OIS discounting curve. First of all, we build the discounting curve that is needed to
recover all the other rates in the multi-curve framework. Remember that since EONIA was
substituted and is no longer available from the beginning of 2022, we use the instruments
on the current overnight rate quoted in the Euro market, i.e. eSTR.
To construct the OIS curve starting today, we use the three first quoted Depos in the
very short term. In fact, we select those with maturity Overnight (ON), Tomorrow night
(TN) and Spot night (SN) that have as settlement rule, respectively, today, tomorrow and
spot. Notice that there is a small inconsistency in this first part of the curve because we
are using instruments written directly on the Euribor and not on the overnight rate. We
then choose the OIS written on eSTR with maturity between one week and 60 years. In
addition, we consider the forward OIS on ECB announcement dates, useful for reflecting
the monetary policy decisions of the Central bank. In fact, we highlight that the month
of July 2022 in the Euro market is a particular moment due to the high inflation that is
hitting the entire world. To contrast this sharp increase, it is expected that the ECB will
rise, for the first time in more than a decade, the interest rates by the end of the month.
Therefore, at the chosen reference date, some of these expectations are already reflected
in interest rates even if the official rise has not yet happened. In Appendix A, in table 17,
are reported all the instruments used for the construction of the OIS discounting curve
with the details about the start and maturity date of each instrument. Once we have
selected the bootstrapping instruments, we can derive the zero coupon bonds from Depos
and OIS.
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Euribor 6 months yield curve. We can proceed with the construction of the Euribor
6 months yield curve. There are different possible choices for the selection of the boot-
strapping instruments and the technicalities of the procedure. It is rather subjective since
there is no unique rule. It depends on the market, the availability of data and the curve
construction’s aim. In Appendix A, table 18, we report all the instruments we use for its
construction. The first instrument we select is the Depo with a maturity of 6 months.
Next, we include the 7 quoted FRAs starting in 1 month until 12 months, with the Euri-
bor 6 months as underlying. The term structure is then completed by using the IRS on
6 months tenor from 2 years to 60 years. Notice that, differently from the discounting
curve, we evaluate the curve at the spot date. Despite this, it is enough to discount the
entire curve using the spot discount factor to obtain the curve with the reference date
today.
We can recover the FRA curve, the zero-coupon bond curve and, consequently, the zero-
coupon curve. The last one is of major interest since zero rates are needed for the imple-
mentation and calibration of the two-factor Vasicek model.

4.4 Climate factor distortion

4.4.1 Emission scenarios

Following the procedure presented before, we have first to find two values: the correlation
between interest rates and emissions and the future variation forecasted by the IPCC’s
scenarios. For the first passage, we use the daily time series of GHG emissions in Europe
that we discussed in combination with the time series of IRS with 20, 40 and 60 years of
maturity. We make this choice to be consistent with the same division in time that we
adopt with the mean surface temperature. The shifts will be introduced exactly at those
three points in time. Computing the correlation using single instruments’ time series we
obtain what is reported in Table 7.

As regards the second passage, we rely on the estimation of the IPCC’s scenarios for

Table 7: Historical correlations between air emissions and IRS with maturity 20, 40, 60
years in the period 01/01/2015 - 31/12/2021.

AIR EMISSIONS CORRELATIONS

IRS 20Y IRS 40Y IRS 60Y

0.5247 0.5342 0.5330

future CO2 emissions. From the dataset in [16], we recover the values and calculate
the variations with respect to 2020 of the estimated emissions in 2040, 2060 and 2080.
We lose here a bit of consistency: the periods are not exactly the same we consider for
interest rates with maturity at 20, 40 and 60 years from now (for two years); the data
includes only carbon dioxide, while our historical data entails different greenhouse gases;
the emissions estimated from IPCC are global, instead our focus is only the European
Union. Nevertheless, the major role in emissions is played by CO2 and just a couple
of years of difference does not have a substantial impact on the estimations. Hence, we
recover the variations as in Table 8.
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Table 8: CO2 emissions variations from IPCC’s AR6 in 2040, 2060 and 2080 with respect to

the level of 2020.

CO2 EMISSIONS VARIATIONS

TIME SSP1-1.9 SSP1-2.6 SSP2-4.5 SSP3.7-0 SSP5-8.5

2040 -0.74 -0.33 0.09 0.31 0.57

2060 -1.04 -0.74 -0.01 0.49 1.30

2080 -1.18 -1.08 -0.34 0.64 1.97

4.4.2 Temperature scenarios

Similarly, we proceed with the temperature scenarios. We compute the linear correlation
between the daily average European temperature and the time series of IRS rate quotes
at 20, 40 and 60 years. This is because IPCC defines each temperature scenario for
three periods (2021-2040, 2041-2060, 2080-2100) and, hence, we select the corresponding
instrument with the maturity at the end of the scenarios’ period. Since there are no quotes
for instruments with maturity up to 2100, for the last one we consider the beginning of
the period. Notice that, for example, the IRS at 20 and 40 years mature in 2042 and
2062. However, we consider them in the previous scenario for practical reasons as there
is no quoted IRS that matures 38 years from today. It is an adaptation of the available
data within the assumptions of the scenarios. The results of the correlation are reported
in Table 9.
Each scenario forecasts a different increase in temperature over a time period, based on

Table 9: Historical correlations between mean surface temperature and IRS with maturity 20,

40, 60 years in the period 01/01/2015 - 31/12/2021.

MEAN TEMPERATURE CORRELATIONS

IRS 20Y IRS 40Y IRS 60Y

-0.0684 -0.0676 -0.0663

the underlying assumptions. To incorporate the variations in temperature into interest
rate projections, we have to transform the increments into a percentage. To do so, we have
to understand which is the starting point of the measurements, i.e. the global average
temperature used as the basis for the scenarios. There is no direct reference in the IPCC
report about the 1995-2014 global average temperature and neither for the pre-industrial
period 1850-1900. However, from the ERA5 dataset, we know that the global average
temperature for 1991-2020 is estimated at 14.4C, which is about 0.88C higher than the
mean of 1850-1900. We can now recover the 1995-2014 basis as 13.52 + 0.82 = 14.34C,
with 0.82 being the difference between the two bases used in IPCC, and we use this
average as a base to calculate the percentage increases in temperature since it is close to
the period that we are studying.
As a remark, notice that we considered the daily average temperature in the EU, while

these are global scenarios. This means that our results will be an approximation and
biased in an optimistic way since the warming rate in Europe is currently higher. We can
now use these percentage increments to evaluate the impact on interest rates.
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Table 10: Mean temperature variations from IPCC’s AR6 in 2021-2040, 2041-2060 and 2081-

2100 with basis 1995-2014.

MEAN TEMPERATURE VARIATIONS

TIME SSP1-1.9 SSP1-2.6 SSP2-4.5 SSP3.7-0 SSP5-8.5

2021-2040 0.04 0.04 0.05 0.05 0.06

2041-2060 0.05 0.06 0.08 0.09 0.10

2081-2100 0.04 0.06 0.13 0.20 0.24

4.5 Benchmark curves construction

The distortion is introduced into the zero-rates so, to spread the effects, we have to
compute again the zero-coupon bonds. We calculate them for each different scenario with
respect to the distorted zero-rates with maturity at 20, 40 and 60 years. The last future
value is, in our case, the zero-coupon bond corresponding to the zero-rate shifted at 60
years of maturity. The value was retrieved from the quote of IRS: since we use the quotes
of IRS with maturity from 2 to 60 years, we recover all the corresponding values in a
straightforward way. Going further, we compute the inverse of the 6x12 and 12x18 FRAs,
while in the bootstrapping we used 7 different FRA quotes. This is because they are not
directly linked to the distortion introduced in the IRS quotes, but we recover their values
by interpolation. The last instrument that we used in bootstrapping was a Deposit. In
this case, we cannot invert the formula to obtain the previous value. However, we have
that the Depo rate changes accordingly to satisfy equation (2). Once we retrieved all
the values, we optimize the problem as presented before. After that, we recompute the
new zero-rates and retrieve the benchmark curves by mean of Monotonic Cubic Spline
interpolation. All the procedure is performed for each scenario.
The variables that we study in this research, surface mean temperature and emissions, are
strictly connected. We know that high GHG emission concentrations directly influence the
global temperature, but the inverse relationship does not hold. In fact, IPCC’s scenarios
are primarily based on future emissions, while temperature scenarios are a consequence
of the total amount of radiative forcing at the end of 2100. Given this strict link, we are
interested in evaluating the joint effects of temperature and emissions on interest rates.
To be more precise, we have to consider the case of temperature variations’ impact once
the influence of GHG emissions has taken place, otherwise, we would consider the effects
of the variables as if they were independent of each other. Therefore, we focus on the
outcomes from a variation in temperature conditioned to changes in emissions. Put into
practice, we start from the distortion of the market zero rates with maturity at 20, 40
and 60 years relative to the emission scenarios as in equation (1). We then apply the
reverse bootstrapping and recover the five benchmark curves, obtaining the impacts of
emissions on our term structure. Going further, to account also for the temperature, we
shift again the zero rates for each equivalent temperature scenario. We take now those
from the corresponding benchmark emissions curve and not from the original one. For
example, if we consider scenario SSP1-1.9 at 20 years of maturity, we would introduce the
distortion in the zero rates as

∆emR(t, 20) = R(t, 20) +R(t, 20)× 0.5247× (−0.74), (13)

where we use the values from Table 7 and 8. The same must be done for the zero rates
at 40 and 60 years of maturity. After recovering the entire SSP1-1.9 benchmark curve
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for emissions, we apply the same procedure considering the relative temperature scenario
SSP1-1.9 at 20 years of maturity. Therefore

[∆tempR(t, 20)|em] = ∆emR(t, 20) + ∆emR(t, 20)× (−0.0684)× 0.04 (14)

where we use the values from Table 9 and 10. We repeat the same passages at 40 and 60
years of maturity. Through reverse bootstrapping, we recover the final benchmark curve
representing the temperature scenarios conditioned to the emission ones. This is done for
each SSP’s scenario.

In Figure 2, we plot the five conditioned benchmarks against the original yield curve
derived from the market. As we can see, the benchmark curves lie above or below the
current zero curves depending on the assumptions, and consequent variations, under the
different scenarios. Those that consider no or limited climate intervention (SSP5-8.5 and
SSP3-7.0) predict an increase in the rates in the long term, while those that assume heavy
limitation of emissions (SSP1-1.9 and SSP1-2.6) result in a decrease in the term structure.
Scenario SSP2-4.5 curve is the closest to the original one due to the similar climate change
assumptions. In fact, it represents a situation where no other modification is introduced
with respect to what is employed currently, at least until the middle of the century. The
benchmark curves are coherent with the fact that, in case of higher uncertainty, the market
reflects the risk by increasing the rates. On the contrary, if policy interventions succeed
in achieving huge reductions in GHG emissions, the market is more stable and the rates
are lower. Hence, our distortions display a sort of riskiness implied by that particular
scenario.
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Figure 2: Temperature benchmark curves conditioned to emissions scenarios for each SSP
scenario, plotted against the original market zero curve.

4.6 The climate-Vasicek model implementation

Finally, we can set up the climate-Vasicek model that we formalized. Our aim is to
recover the values of the parameters that replicate the shape of each benchmark curve.
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In practice, the calibration of our model starts with the simulation of the future values
for the rates y and for the climate change variable c. We perform n = 103 different
simulations for each factor. Despite the number may look smaller, it is high enough
to achieve encouraging results and finalize the optimization in a reasonable amount of
time. The next step is to split again the benchmark curves into three parts, at the same
points as we did during their construction. In fact, each part is dominated by the shift
we introduced at one point, using that specific correlation. To be consistent as much as
possible with the idea under the benchmark curves, we use three different coefficients of
correlation also when performing the optimization of the model. In this case, however,
we use the correlation considering the average of the interest rates instruments for each
period, hence for the first 20 years, between 21 and 40 and 41 to 60. Remember that
we built benchmark curves that account for the variations in temperature implied by the
CO2 emissions, where we performed a double distortion to take care of this conditioning.
In the climate-Vasicek model, we cannot proceed in the same way. Instead, we need to
find a measure of dependence among the three variables at the same time. Since linear
correlation can be calculated only between two variables, we rely on copula functions.
From Sklar’s theorem, we know that any multivariate joint distribution may be rewritten
as a univariate marginal distribution function and a copula. Indeed, we use this relation to
study the inter-correlation structure between the random variables. Among the different
parametric copula families existing, we select the Frank copula. It belongs to the family of
Archimedean copulas, which admit an explicit formula and make use of just one parameter
to control the strength of dependence. This choice is led by the feature of this particular
copula of modelling the dependence of middle values, contrary to other Archimedean
copulas. In fact, we can measure in this way the symmetric dependence between variables
rather focusing on the dependence in the tails. Without going into other details, we refer
to [19] for further information. We recover the α parameter defining the Frank copula
on our three-time series using R. It can be then transformed into a measure of ordinal
association, i.e. the Kendall’s τ coefficient, through the following relationship:

τ = 1 +
4

α
(D1(α)− 1), with D1(α) =

1

α

∫ α

0

t

et − 1
dt.

Once we recover Kendall’s τ , we can convert it into Pearson’s ρ to finally obtain a synthetic
value for the dependence among interest rates, temperature and emissions to use inside
our affine model. We report the coefficients in Table 11. Compared to the ones for
temperature and emissions, we notice that they are reasonable: they are lower than those
with emissions probably because of the negative dependence effect of temperature and
interest rates and temperature and emissions. As regards the benchmark curves of only
the temperature or emissions, we simply use the correlation with the average interest rates
quoted in each time period considered (see Section 4.2).

Table 11: Pearson correlation coefficients between interest rates, emissions and mean tempera-

ture for the period 2015-2021 recovered from the Frank copula’s Kendall’s τ .

TEMPERATURE AND EMISSIONS

6M - 20Y 20Y - 40Y 40Y - 60Y

0.4039 0.3899 0.3909

Our calibration is thus made on one part at a time, not for the entire curve at once.
Although this choice is made primarily for coherence, it is also a common procedure in
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the calibration of the Vasicek model. It is well known that its simplicity, due to the
constant parameters, could lead to poor results. Indeed, to improve the fitting, the curve
can be split and calibrated for each part: the so-called calibration by compartments.
This happens in particular when the shape of the curve assumes particular forms, as in
our case. If we consider the extreme scenarios, SSP1-1.9 and SSP5-8.5, we can see that
there are various humps and dips impossible to model with the same constant parameters
for the entire curve. After some trials, we find out that the best splitting is at every
10 years. This is in particular true for the first section of the curve, which otherwise is
underestimated by the calibration due to the high hump. We thus calibrate the model
for 10 years at a time, using τ = 2 years to avoid excessive over-fitting.

4.7 Results discussion

Finally, we can analyse and discuss the results of the calibration performed as described
above. The benchmark curve of scenario SSP1-1.9 represents the Paris Agreement goal,
with strong mitigation actions and a temperature increase limited to 1.5C. Therefore, it
would be the best case from a climatic point of view. In fact, the curve is noticeably
lower than the current market curve. We can see that the effects of the climate variables
start to be more visible from the tenth year onwards. In 2042, the point at which we
introduced the first shift, the benchmark curve is about 0.8% lower than the current one
and until 2080 it slowly decreases to 0.5%, hence almost 1% lower than the value on the
market curve. The SSP1-1.9 curve is not perfectly smooth, in 2042 there is almost an
angle, which usually is not a desirable feature in yield curves. This point is probably
due to the optimization made during the reverse bootstrapping. The assumption of the
fixed forward rates did not leave enough space for zero-coupon bonds to accommodate
nicely. As regards the calibration, the results plotted over the original benchmark curve in
Figure 3 show that in the long term the model is able to capture almost perfectly the zero
rates. The same is not true for the first 20 years of the term structure, where the points
estimated by the model are sometimes not so close to the original one. In particular, at 10
and 12 years we notice that the model underestimates and overestimates respectively the
zero rates. Consider, however, that these two points represent the calibration performed
on two different sections of the curve.
Another interesting point is again the one at 20 years. Here, the model overestimates the

point and makes the curve smoother than the original one. Of course, the Vasicek model,
even with two factors, cannot reproduce such a shape. In Table ?? we report the estimated
parameters for each section of the curve (every 10 years). It is harder to interpret these
values than in the one-factor case, however, we can provide some remarks. The values for
κi are correctly always positive, with κ1 being very high for the first section with respect
to the other values of κi. From the one-factor model, we know that this parameter usually
represents the speed of reversion and it should be interpreted together with the value of
σ2
i . Their ratio represents the long-term variance for each factor. We can notice that the

high values for σ2
i are balanced by the coefficients of κi. The values for the mean reversion

parameters θi are generally positive for one factor and negative for the other, indicating a
sort of compensation between them. The market price of risk is positive for both factors.

The SSP1-2.6, SSP2-4.5 and SSP3-7.0 scenarios are smoother and look like real zero-
rate curves. SSP1-2.6 scenario represents the target of a maximum increase in temperature
of 2C, thus requiring a substantial cut in GHG emissions by the second half of this century.
On average, it is lower than the current curve by about 0.5% and it increases in time up
to almost 1% in 2080. This scenario is very similar to the SSP1-1.9 one, differing only
by the timing of the effects but reaching almost the same results over a long period.
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Figure 3: Temperature SSP1-1.9 benchmark curve conditioned to emissions scenario and cor-

respondent model curve.

Table 12: Climate-Vasicek model’s parameters for the SSP1-1.9 scenario for temperature given

emissions at each 10 years.

SSP1 - 1.9

κ1 κ2 θ1 θ2 λ1 λ2 σ2
1 σ2

2

41.72 15.81 -4.85 4.89 1.49 1.57 0.06 5.86

22.76 18.22 4.55 -2.79 0.47 2.73 3.14 15.34

18.80 17.92 3.45 -1.58 0.70 2.45 2.00 11.35

7.54 16.77 -3.21 6.80 2.96 0.03 29.05 8.17

17.65 14.27 2.32 -0.43 0.28 2.66 2.71 14.94

14.43 13.07 1.93 0.52 1.01 2.75 5.73 16.79

On the contrary, the SSP3-7.0 scenario is the first that does not consider an immediate
reduction in GHG emissions and thus entails a higher increase in temperature over time.
Accordingly, it always lies above the market curve for about 0.5% over the entire period in
the examination. A middle-of-the-road situation is clearly visible from scenario SSP2-4.5.
The initial part of the curve is above the current one notwithstanding that the emissions
are expected to maintain the same levels as today. From 2060, the curve diminishes
corresponding to the reduction of GHG emission, however, never reaches the net zero.
This scenario is very similar to the current curve and it lies below or above it for less than
0.4%. In the long term, the model predicts the values very close to the real ones from the
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Figure 4: Temperature SSP1-2.6 benchmark curve conditioned to emissions scenario and cor-

respondent model curve.

benchmark curves. Only the SSP1-2.6 curve from the model looks slightly smoother than
the original. Despite this, all three calibrations result in an over- and underestimation of
the points at 10 and 12 years. Again, this is because it is the point at which we separated
the calibration. In Tables 13, 14 and 15 we report the1 values of the calibrated parameters.
The values of θi do not follow a particular pattern, they differ in sign and size for all three
scenarios. We should consider them in connection with the market price of risk κi and σ2

i

to compute the actual mean reversion factor under the risk-neutral measure. The values
of σ2

i are usually higher in the second half of the curve, whereas in the SSP2-4.5 scenario
reach the value of 61.59. These values indicate a substantial level of randomness in the
system. By looking at the κi, we notice that their high values are capable of stabilizing
the fluctuations in the long term (remember the long-term variance computed as σ2

i /2κi).
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Figure 5: Temperature SSP2-4.5 benchmark curve conditioned to emissions scenario and cor-

respondent model curve.
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Figure 6: Temperature SSP3-7.0 benchmark curve conditioned to emissions scenario and cor-

respondent model curve.

27



Table 13: Two-factor Vasicek model’s parameters for the SSP1-2.6 scenario for temperature

given emissions at each 10 years.

SSP1 - 2.6

κ1 κ2 θ1 θ2 λ1 λ2 σ2
1 σ2

2

44.57 16.34 -4.78 4.89 1.50 1.59 1.25 5.42

27.92 22.42 3.15 -1.73 0.75 2.20 1.95 9.18

17.37 15.46 3.57 -1.43 0.59 2.60 2.95 13.79

7.77 18.12 -3.96 8.55 4.06 -0.45 46.39 9.54

8.24 15.45 -4.26 6.87 2.34 0.29 22.76 6.38

7.65 14.64 -3.47 7.46 3.75 0.09 38.98 6.42
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Table 14: Climate-Vasicek model’s parameters for the SSP2-4.5 scenario for temperature given

emissions at each 10 years.

SSP2 - 4.5

κ1 κ2 θ1 θ2 λ1 λ2 σ2
1 σ2

2

43.60 15.31 -5.28 5.28 1.54 1.63 3.14 6.97

33.36 32.15 0.21 0.71 0.91 1.86 0.59 4.94

19.19 17.17 2.59 -0.61 0.69 2.96 2.55 19.32

13.08 15.62 -0.03 2.27 1.32 2.13 6.49 11.67

7.81 17.02 -3.87 9.64 5.04 -0.61 61.59 8.85

8.99 18.56 -6.08 10.69 5.20 0.43 45.72 1.80

Table 15: Climate-Vasicek model’s parameters for the SSP3-7.0 scenario for temperature given

emissions at each 10 years.

SSP3 - 7.0

κ1 κ2 θ1 θ2 λ1 λ2 σ2
1 σ2

2

45.55 15.11 -4.92 5.17 1.56 1.50 8.53 1.59

31.27 27.58 0.78 -0.13 0.81 2.04 0.06 4.77

17.10 17.14 3.39 -1.04 0.61 2.85 3.48 17.35

22.40 18.73 2.47 -1.32 0.73 2.94 0.91 14.49

11.39 12.68 0.63 2.66 1.77 2.06 11.60 15.96

17.25 14.35 1.66 0.003 0.53 2.84 1.71 15.80

The worst-case scenario SSP5-8.5 predicts no climate policy and intervention on GHG
emissions. Thus, it is expected that they will consistently grow over time and, accordingly
with them, the mean temperature too. The benchmark curve displays a significant in-
crease in time of the zero-rates, reaching almost 1.5% above in 2080. This represents the
substantial rise in uncertainty in the market due to the worsening of climate conditions.
Similarly to what happened with the SSP1-1.9 scenario, also here the curve is not par-
ticularly smooth. The points at which we introduced the shifts can be recognized: there
are three visible humps in 2042, 2062 and 2082. Regarding the calibration, as usual, the
long-term part is almost perfectly reproduced by the model. From today up to 40 years
from now, instead, the zero rates are alternatively over- or underestimated by the model.
Here, the point at 10 years is likely the same for the model and for the benchmark curve,
while the 12th-year point underestimates the original point. Another section less well
fitted is that between 20 and 30 years, where again we have some small inconsistencies.
In Table 16 we synthesize the estimated parameters for this scenario. The coefficients for
κi are on average equal to 15 for all the parts of the curve, excluding the first twenty years
where they are consistently higher. The θ1 is always positive, with an exception for the
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Figure 7: Temperature SSP5-8.5 benchmark curve conditioned to emissions scenario and cor-

respondent model curve.

Table 16: Climate-Vasicek model’s parameters for the SSP5-8.5 scenario for temperature given

emissions at each 10 years.

SSP5 - 8.5

κ1 κ2 θ1 θ2 λ1 λ2 σ2
1 σ2

2

44.64 15.10 -5.19 5.30 1.56 1.63 2.34 4.72

24.46 32.65 7.94 -7.43 1.09 4.07 1.24 14.25

18.15 16.97 3.04 -1.17 0.77 2.29 2.17 9.76

13.81 15.38 1.61 -0.59 1.21 2.21 0.19 3.69

14.30 13.47 2.14 0.41 0.92 2.79 4.40 16.30

13.18 15.04 1.54 -0.68 0.94 2.17 0.02 3.57

first 10 years, and respectively θ2 compensates with an opposite sign almost every time.
The λi are positive, with λ2 always greater than λ1 and the same relation holds for σ2

i .
There is a greater fluctuation in the randomness in sections 10-20 years and 40-50 years.

In conclusion, the calibrations for each scenario produced in general good fittings of
the curves. A higher number of simulations however should produce even better results.
We found high values for the parameters estimated. This is probably due to the reduced
number of points calibrated, the short time periods considered for each section and, above
all, the randomness in the underlying factors.
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4.8 The BCC approach as a policy tool

Over the years, various policies are pursued at a national or international lever. It is clear
that the long-term nature of climate change requires interventions that can anticipate the
effects and prepare the economy for the future. The environmental and climate change
concerns are however a significant source of instability and a multiplier of threats. The
transition to a low-carbon economy will restructure society as it is known today. For
these reasons, the EU already started considering the implications of climate policies
when making decisions and taking action. In the short term, under the 2030 climate and
energy framework, the EU aims to reduce the GHG emissions of at least 40% to the levels
of 1990, account for at least 32% share of renewables, enhance the energy efficiency of at
least 32.5%. Notice that the EU’s NDC of 2020, however, slightly modified these aims and
targets now an emission reduction of at least 55% by 2030 [9]. In line with the commitment
of the EU to the Paris Agreement, the EU set in 2020 the European Green Deal (EGD),
which corresponds to various policy initiatives directed to tackle climate change with the
objective of shifting the current economy to its enhanced version, increasing the fairness,
wealth and competitiveness. The core purposes are achieving zero net GHG emissions
by 2050 and decoupling the economic expansion from the use of resources. Furthermore,
the EGD attempts to privilege natural capital, the well-being of people more subject
to environmental risks, while always worrying about realizing a transition as equal and
inclusive as possible. It acknowledges the variety of subjects, sectors and areas affected,
thus providing more attention to those who must face up the hardest challenges [7].
Despite attempts at mitigation, climate change continues to put a substantial burden
on Europe and thus the Commission has to reinforce its approach for adaptation. It
will be crucial to ensure that investors, insurers, enterprises, towns, and individuals can
access data and create tools to incorporate climate change into their risk management
techniques throughout the EU. The risks related to the climate and the environment
will be controlled and assimilated into the financial system. This entails assessing the
adequacy of the current capital requirements for green assets and better integrating such
risks into the EU prudential framework. Via the financial system, it would be possible
to improve resiliency to climate and environmental threats, particularly in terms of the
dangers and harm caused by physical natural disasters [7].
Given these remarks, the BCC approach can be seen as an helpful tool to assess the
different possible climate effects on interest rates. Given the relevance of the fixed-income
market, it would be essential to size the impact of an increase in climate risk and be able to
formulate different scenarios. Although the yield curve is subject to a continuous repricing
in the market, in the long term it matters more the overall direction than the daily
volatility. Since the movements that we introduce with the BCC approach are exclusively
dependent on the size of climate risk, ceteris paribus, we can efficiently separate it from
other factors that normally influence interest rate. Therefore, monitoring the course
of interest rates could potentially improve the understanding of long-term expectations.
Consequently, this approach can be used to guide the market towards the right direction:
understanding the potential impacts is the first step towards actions that can limit the
increase in climate risk, as the EU aims.

5 Conclusions

This paper attempted to model the impacts of climate change on the term structure of
interest rates by using the proposed BCC approach. Our innovative method leads to
a coherent future distortion in rates, linked to the forecast of climate risk, that can be
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modelled by introducing a climate change factor inside a short rate model. In particular,
the construction of the so-called benchmark curves, representing each one a different
climate scenario, allowed us to calibrate on them the parameters of a Climate Vasicek
model. Applied to the EUR market, our method demonstrates that the term structure
can be influenced positively or negatively by the effects of climate change. The rates might
increase more than 1% due to the uncertainty caused by the introduction of climate risk
under the worst case scenario. Instead, in case of policy interventions that substantially
limit GHG emissions, the term structure decreases, displaying the implications of lower
climate risks perceived in the future. The size of the variations is greater in the long
term due to the forward-looking nature of climate. This evidence shows how the BCC
approach could help the EU to favour the implementation of more sustainable measures
to deal with climate change.
The general methodology that we proposed can be adapted and investigated further. First
of all, there are different variables that can be substituted e.g. the climate scenarios, the
climate change variables, the short-rate model. Our selection of factors was driven by the
focus on Eurozone, however it is possible to easily change them accordingly to the chosen
market. Second, the potential shift in the sentiment of investors and consumers due to the
Covid-19 pandemic should be deepened. It is worth to look into it as it could represent
the turning point in how the market prices climate risk and would be essential for policy
makers to monitor. Finally, it would be interesting to model the dynamics of the climate
change variables to account for their specific characteristics also in the model, for example
considering the seasonal effect that those kind of variables usually have. However, this
will add more complexity.
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A Appendix: Bootstrapping instruments

Table 17: Bootstrapping instruments selected for the discounting OIS curve at 8th July 2022.

BOOTSTRAPPING
INSTRUMENT

TENOR RATE (%) START DATE END DATE

DEPO ON 1D -0.4000 July 8th, 2022 July 11th, 2022

DEPO TN 1D -0.4000 July 11th, 2022 July 12th, 2022

DEPO SN 2D -0.4000 July 12th, 2022 July 13th, 2022

OIS SW 1W -0.5800 July 12th, 2022 July 19th, 2022

OIS 2W 2W -0.5800 July 12th, 2022 July 26th, 2022

OIS ECB JUL Fix -0.2890 July 28th, 2022 Sept 15th, 2022

OIS ECB SEPT Fix 0.2290 Sept 15th, 2022 Nov 3rd, 2022

OIS ECB NOV Fix 0.6250 Nov 3rd, 2022 Dec 22nd, 2022

OIS ECB DEC Fix 0.9000 Dec 22nd, 2022 Feb 9th, 2023

OIS 15M 15M 0.8220 July 12th, 2022 Oct 12th, 2023

OIS 18M 18M 0.9280 July 12th, 2022 Jan 12th, 2024

OIS 21M 21M 1.0050 July 12th, 2022 April 12th, 2024

OIS 2Y 2Y 1.0620 July 12th, 2022 July 12th, 2024

OIS 3Y 3Y 1.2060 July 12th, 2022 July 14th, 2025

OIS 4Y 4Y 1.3420 July 12th, 2022 July 13th, 2026

OIS 5Y 5Y 1.4710 July 12th, 2022 July 12th, 2027

OIS 6Y 6Y 1.5680 July 12th, 2022 July 12th, 2028

OIS 7Y 7Y 1.6510 July 12th, 2022 July 12th, 2029

OIS 8Y 8Y 1.7290 July 12th, 2022 July 12th, 2030

OIS 9Y 9Y 1.8040 July 12th, 2022 July 14th, 2031

OIS 10Y 10Y 1.8770 July 12th, 2022 July 12th, 2032

OIS 11Y 11Y 1.9430 July 12th, 2022 July 12th, 2033

OIS 12Y 12Y 2.0060 July 12th, 2022 July 12th, 2034

OIS 13Y 13Y 2.0560 July 12th, 2022 July 12th, 2035

OIS 14Y 14Y 2.0920 July 12th, 2022 July 14th, 2036

OIS 15Y 15Y 2.1120 July 12th, 2022 July 13th, 2037

OIS 16Y 16Y 2.1250 July 12th, 2022 July 12th, 2038

OIS 17Y 17Y 2.1290 July 12th, 2022 July 12th, 2039

OIS 18Y 18Y 2.1240 July 12th, 2022 July 12th, 2040

OIS 19Y 19Y 2.1150 July 12th, 2022 July 12th, 2041

OIS 20Y 20Y 2.1020 July 12th, 2022 July 14th, 2042

OIS 25Y 25Y 2.0200 July 12th, 2022 July 12th, 2047

OIS 30Y 30Y 1.9330 July 12th, 2022 July 12th, 2052

OIS 40Y 40Y 1.8250 July 12th, 2022 July 12th, 2062

OIS 50Y 50Y 1.7350 July 12th, 2022 July 12th, 2072

OIS 60Y 60Y 1.6530 July 12th, 2022 July 13th, 2082

35



Table 18: Bootstrapping instruments selected for the 6 month curve at 12th July 2022.

BOOTSTRAPPING
INSTRUMENT

RATE(%) START DATE END DATE

DEPO 6M 0.39 July 12th, 2022 Jan 12th, 2023

FRA 1x7 0.59 Aug 12th, 2022 Feb 13th, 2023

FRA 2x8 0.828 Sept 12th, 2022 March 13th, 2023

FRA 3x9 1.004 Oct 12th, 2022 April 12th, 2023

FRA 4x10 1.165 Nov 14th, 2022 May 15th, 2023

FRA 5x11 1.3 Dec 12th, 2022 June 12th, 2023

FRA 6x12 1.398 Jan 12th, 2023 July 12th, 2023

FRA 12x18 1.682 July 12th, 2023 Jan 12th, 2024

IRS6M 2Yrs 1.3 July 12th, 2022 July 12th, 2024

IRS6M 3Yrs 1.461 July 12th, 2022 July 14th, 2025

IRS6M 4Yrs 1.604 July 12th, 2022 July 13th, 2026

IRS6M 5Yrs 1.735 July 12th, 2022 July 12th, 2027

IRS6M 6Yrs 1.839 July 12th, 2022 July 12th, 2028

IRS6M 7Yrs 1.925 July 12th, 2022 July 12th, 2029

IRS6M 8Yrs 2.006 July 12th, 2022 July 12th, 2030

IRS6M 9Yrs 2.083 July 12th, 2022 July 14th, 2031

IRS6M 10Yrs 2.156 July 12th, 2022 July 12th, 2032

IRS6M 11Yrs 2.217 July 12th, 2022 July 12th, 2033

IRS6M 12Yrs 2.272 July 12th, 2022 July 12th, 2034

IRS6M 13Yrs 2.314 July 12th, 2022 July 12th, 2035

IRS6M 14Yrs 2.342 July 12th, 2022 July 14th, 2036

IRS6M 15Yrs 2.353 July 12th, 2022 July 13th, 2037

IRS6M 16Yrs 2.355 July 12th, 2022 July 12th, 2038

IRS6M 17Yrs 2.347 July 12th, 2022 July 12th, 2039

IRS6M 18Yrs 2.331 July 12th, 2022 July 12th, 2040

IRS6M 19Yrs 2.31 July 12th, 2022 July 12th, 2041

IRS6M 20Yrs 2.285 July 12th, 2022 July 14th, 2042

IRS6M 25Yrs 2.151 July 12th, 2022 July 12th, 2047

IRS6M 30Yrs 2.021 July 12th, 2022 July 12th, 2052

IRS6M 35Yrs 1.923 July 12th, 2022 July 12th, 2057

IRS6M 40Yrs 1.843 July 12th, 2022 July 12th, 2062

IRS6M 50Yrs 1.703 July 12th, 2022 July 12th, 2072

IRS6M 60Yrs 1.609 July 12th, 2022 July 13th, 2082
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