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Abstract: This study examines the performance of climate change risk (CCR) variables in 
predicting corporate failure modeling. The experimental findings, which are supported by real-
world datasets from France, demonstrate that CCR variables combined with accounting- based 
data increase prediction modeling accuracy. When we use the XGBoost model-based climate 
change risk variables (XGBoost-CCR), the impact becomes more prominent. Moreover, 
explainable artificial intelligence framework (XAI) and feature importance  plots are used to 
enhance model interpretability. Findings show that our proposed model correctly predicted 
94.76% of the liquidation cases, whereas the accuracy decreased to 90.35% when predicting 
bankruptcy only with accounting ratios. Additionally, the results indicate that incorporating 
CCR variables enhances the overall accuracy of prediction models by an average of 4.41%, and 
increases the area under the ROC curve by 6.2%. 
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1. Introduction 
 
 Temperature is raising across the world affecting not only the local biodiversity and 
population, but also the business environment. According to the 2019 report of the International 
Labor Organization, an estimated increase of 1.5ºC in the global temperature by the end of 
2100 could lead to a labor productivity loss in 2030 representing about 80 million full-time 
jobs. By assuming that the activities of agriculture and construction would be carried out in the 
sun, that loss could reach 136 million full-time jobs. Moreover, the heat stress would also 
generate economic losses of $2.400 billion in 2030 that are almost 8 times higher than the 
similar losses incurred in 1995 (ILO, 2019). However, supporting the climate change resilience 
of individuals, firms and systems can be a solution to reduce the severity of those losses. 
According to Neufeldt et al. (2021), the costs of adaptation to actual and expected climate 
effects will almost double for the developing countries during 2030 and 2050. Even in the case 
of a strong financial capacity to implement adaptation measures, some degree of climate change 
cannot be avoided through mitigation policies (European Investment Bank, 2012).  
 Hence, extreme changes in the local temperature can lead to the destruction of full-time 
jobs and productivity losses. Such consequences were empirically confirmed by the 
environmental literature. For instance, Cai et al. (2018) reported an inverted U-shaped 
relationship between the manufacturing worker productivity and the daily maximum 
temperature in China. The cold and the heat stress can negatively affect the efficiency of 
manual-labor intensive tasks generating significant economic losses for the manufacturing 
firms. Liu et al. (2023) also reached a similar result for Chinese listed firms over the period 
2011-2019 for which the labor productivity should be expected to decrease by 1.64% following 
an increase of one standard deviation in the high-temperature weather. More interestingly, Zhao 
et al. (2021) estimated that the global economic losses caused by the heat-related employees' 
productivity losses should range between 0.31% and 2.6% of the 2100 global gross domestic 
product (GDP) with South Asia, Sub-Saharan Africa and Central America incurring the largest 
economic losses. In this frame of temperature-firm relationship, the business failure can be 
accelerated by the productive inefficiency measured by the distance from the firm's optimal 
operational approach (Becchetti and Sierra, 2003). As the losses in labor productivity can be 
associated with the operational inefficiencies, an important question for the corporate risk 
literature can be raised that is how the weather conditions should relate to the bankruptcy risk 
of firms. 
 This paper addresses that question by examining the bankruptcy prediction power of 
climate change risk assessed at local and national level. In this regard, our analysis is performed 
on an original sample composed of non-financial and non-listed French firms over the period 
2010-2022 among which 13975 healthy firms and 2360 financially distressed firms for which 
a liquidation procedure was triggered in court. The existence of a nexus between weather 
conditions and corporate bankruptcy can be explained mainly through the physical damage and 
operational disruptions that the climate change events can have on a firm’s assets (Campiglio 
et al., 2022; Fuss, 2016). In this framework, the environmental determinism (Bourgeois III, 
1984; Whittington, 1988) argues that the environment limits the number of alternatives or 
strategies a firm can adopt to overcome the financial distress or to increase its performance. 
Consequently, the risk of failure should be higher for firms with a limited capacity to overcome 
or to avoid the physical damage that weather events can have on its assets. 
 In terms of novelty and contributions, our research expands three major strands of 
academic literature. First, the ecological literature investigated mainly the consequences of the 
environmental degradation on a firm’s financial performance or productivity (Cevik and 
Miryugin, 2023) Huang et al., 2018; Pankratz et al., 2023; Zhang et al., 2018). This study offers 
a new research perspective by focusing for the first time on the relationship between local and 



global weather conditions and the failure risk of firms. Second, the corporate bankruptcy 
literature acknowledged that non-financial variables can be used to better explained the 
outcome of firms confronted with financial issues (Buehler et al., 2012; Cooper and Uzun, 
2019; ;Stef, 2021; Stef and Bissieux, 2022; Stef and Zenou, 2021; Zorn et al., 2017). In this 
research, we propose original and new determinants of corporate bankruptcy constructed using 
local climatological data relying on the daily average temperature (1), the humidity ratio (2), 
the daily precipitation (3) and the average wind speed (4). Additionally, we also explore the 
prediction relevance of the climate change risk measured at national level through the Climate 
Altering Land Cover Index, the Climate Risk Index, the Vulnerability Index and the annual 
change in the surface temperature. Third, our focus on bankruptcy prediction and climate 
change concerns, combined with the incorporation of explainable artificial intelligence (XAI) 
techniques, enables us to provide novel insights into the role of climate change on firm 
liquidation while maintaining model transparency and interpretability.   
 This paper is organized as followed. Section 2 discusses the potential impact of weather 
conditions on a firm’s bankruptcy risk. We briefly present the artificial intelligence 
methodology in section 3 while the data set and the variables are described in section 4. The 
empirical results are shown in section 5. We conclude and highlight the major caveats of this 
study in the last section. 
 
2. Climate change risk and corporate bankruptcy risk 
 
 The causes of corporate bankruptcy are various and multiple as it was suggested by 
Blazy et al. (2013) and   Blazy and Stef (2020) that classified such causes in different categories 
covering aspects dealing with strategic behavior, production operations, financial policy, 
management performance, accidents, outlets and macroeconomic shocks. Ooghe and De 
Prijcker (2008) proposed a different classification of bankruptcy causes that included the firm's 
general environment based on external factors, the immediate environment that is determined 
by the interactions between firm and its stakeholders, the characteristics of management, the 
corporate policy and the firm's characteristics. Among those typologies, one may ask if the 
global warming as captured by changes in temperature should be considered as a default cause 
and how it should be associated with the likelihood of a firm’s bankruptcy. The answers to 
those questions may rely on the impact that severe temperature changes can have on the value 
and the performance of a firm’s assets. 

In this regard, Fuss (2016) argued that climate change events can harm the value of 
financial assets through destruction (1), accelerated depreciation (2) and/or operational 
disruptions (3). The financial pressure exercised by the climate change on firm’s financial 
strength has also been addressed by  Campiglio et al. (2022) that identified four main 
transmission channels. First, capital assets can be destroyed or becoming less profitable 
following a climate-related event. Second, high mean temperature can induce a physical risk by 
forcing firms to upgrade their logistic process. Third, the demand patterns and the supply chains 
can be disrupted by extreme weather events leading to revenue losses and high operating 
expenditures. Fourth, the cost of debt can increase for firms that are exposed to physical risks 
related to climate events.  

Similarly, Huang et al. (2018) suggested that the fixed assets can be physically damaged 
by extreme weather. Consequently, the firm’s earnings and thus the economic performance can 
decrease. Using a large sample of firms operating in 55 countries over the period 1993-2012, 
their panel regressions with year and industry fixed effects confirmed that the firm’s 
performance is negatively affected by the climate risk. Additionally, Zhang et al. (2018) pointed 
out that high temperatures not only impact the labor productivity but can also harm the machine 
performance and capital productivity. By examining half million manufacturing plants, their 



study revealed that extremely high temperatures can significantly decrease the output and the 
total factor productivity of Chinese firms. Additionally, (Pankratz et al., 2023) performed an 
empirical analysis on a larger sample composed of more than 17000 firms from 93 countries 
confirming that the financial performance tends to decrease because of an increased heat 
exposure. They suggested that investors may not fully anticipate the economic impact of the 
physical climate risk. 

In this framework, the physical effects of climate change concern the operations, the 
distribution activities and the firm’s access to resources (Linnenluecke et al., 2013). According 
to Tzouvanas et al. (2019), hot temperature shocks can produce systemic risks by aggravating 
the losses incurred by financially distressed firms. Their empirical analysis based on 600 listed 
European firms over the period 1990-2017 revealed that the systemic risk can go up by 0.24 
basis points following a 1ºC raise in the temperature. Tzouvanas et al. (2019) explained those 
findings through the direct exposure of assets to environmental shocks and the degradation of 
the interconnection between firms with climate sensitive assets and other businesses (Battiston 
et al., 2017). Hence, unexpected temperature changes can generate losses to firms operating 
with climate sensitive assets that can also generate negative externalities for the local economy.  

From a different theoretical perspective, the relationship between the temperature and a 
firm’s default risk can be explained through the environmental determinism. According to this 
Bourgeois (1984), determinism view implies that the environment imposes some constraints 
that dramatically reduce the number of organizational actions that can produce the first best 
outcome for the firm. In other words, the features of the environment define a limited number 
of alternative decisions (strategies) a firm can adopt to prosper and survive ( Whittington, 1988). 
However, the environmental determinism perspective sustains that organizations are subject to 
inertial structures that reduce the capacity of firms to benefit from limited environmental 
resources (Gopalakrishnan and Dugal, 1998). Therefore, firms that can promptly react to the 
environmental changes have more chances to survive in the long run. Compared to other 
environmental forces such as legal policies, market competition, consumer behavior, political 
stability or access to credit, the variation in temperature represents an irreversible phenomenon 
with a long-term persistence even after the stop of carbon emissions at a global scale (Solomon 
et al., 2009). In the light of the environmental determinism theory, a firm that is not able to 
adapt to the unanticipated changes in temperature may be obliged to incur additional costs and 
losses of operational performances that can affect its financial health. 

However, the changes in climatic conditions may not always lead to harmful financial 
impacts. Some studies such as Smit et al. (2000) and Linnenluecke and Griffiths (2012) 
suggested that organizations are subject to a coping range that is composed of circumstances 
related to climate events that will not have adverse consequences on the organizational 
activities. Resilient firms with a wide coping range can tolerate the effects of climate change 
without incurring major damages or additional costs (Linnenluecke & Griffiths, 2012). In this 
regard, Addoum et al. (2020) examined the consequences of the average daily temperature and 
the temperature extremes on U.S. economic establishments over the period 1990-2015. Their 
estimates reported a non-significant relationship between the abnormal temperature exposures 
and firm-level profitability measured through the operating income, net income and earnings 
announcement returns. As highlighted by Linnenluecke and Griffiths (2010),  organizations 
more exposed to extreme weather must face new challenges that will require the development 
of new capabilities and slack resources. Hence, firms with a high degree of resilience to 
environmental impacts and extreme changes in local weather should better preserve their 
financial health compared with firms that have a narrow coping range. 

To strengthen the resilience to global warming, Winston (2014) suggested that firms 
must reconsider the valuation of unpriced costs and benefits, but also embrace radical 
innovations. Nevertheless, firms may be reluctant to replace their assets because of the 



uncertainty on how the climate will change and how the future benefits will be affected by those 
environmental changes (Mendelsohn, 2012). Consequently, the firm's adaptation to global 
warming may be slow. If the costs of adaptation are significant, a firm less resilient to climate 
change may be subject to a weaker financial health than a firm with less climate sensitive assets. 
Overall, a positive impact of the extreme changes in the local weather conditions on the 
likelihood of a firm’s financial failure can be explained by the physical degradation of assets 
(1) and the weak capacity of firms to adapt to climate change (2). 
 

3. Artificial intelligence modeling  

3.1. Logistic model 

As opposed to discriminant analysis, logistic regression was proposed by  Ohlson (1980). The 
logistic regression model estimates the coefficients of these independent variables, which 
indicate the strength and direction of the relationship between each independent variable and 
the probability of bankruptcy. The score function of the probability of failure is calculated as 
follows: 

 

 𝑍 =
ଵ

ଵା௘ష(∑ ം೔ೣ೔శംబ)ಿ
೔సభ

     (1) 

 

where xi is the explanatory factors, and γi are the coefficients of the estimated function. The 
Ohlson model has been shown to have better predictive power than the Altman Z-score model. 
Nevertheless, logit model may be less accurate in predicting bankruptcy during periods of 
economic instability or financial crisis, when market conditions can change rapidly and 
unpredictably (Du Jardin, 2015). 

3.2. Random forest  

Random forest (Breiman, 2001) is a popular machine learning algorithm that is widely used for 
both classification and regression problems. Random forest (RF) can identify the key drivers of 
bankruptcy risk in a dataset. For a given firm, the bankruptcy likelihood stated as a z score, can 
be expressed as follows: 

            𝑍 = 𝑎𝑟𝑔𝑚𝑎𝑥
ଵ

்
∑ 𝑞௧(𝑦/𝑥)்
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where qt(y|x) is the probability distribution of each tree (t), and x is a set of test observations. 
To increase performance accuracy, RF combines a decision tree with an ensemble architecture. 
Each tree in the procedure casts a unit vote, allocating each variable to the output class with the 
highest likelihood of success (Jabeur et al., 2021). 

3.3. Gradient boosting machine 

The Gradient Boosting Machine (GBM) was introduced by Friedman (2001). The core concept 
of GBM is to repeatedly fit ever more simplistic prediction models to the residual errors of the 
prior models. Each weak model is often a decision tree with a limited number of terminal nodes, 
with the purpose of minimizing a loss function that evaluates the difference between predicted 
and true values. The z score function is calculated as follows: 



          𝑍 = ∑ 𝛾௝𝑘(𝑥; 𝑐௝)ெ
௝ୀଵ    (3) 

where k(x; cj) is the base learner, x is the explanatory variables, γj is the expansion coefficients, 
and cj is the parameters of the model. Several variants of GBM have also been cretaed over the 
years, including XGBoost, LightGBM, and CatBoost, which improved performance and 
scalability over the original algorithm. 

3.4. Extremely randomized trees  

Extremely Randomized Trees (ERT) is an ensemble learning method that combines multiple 
decision trees to improve the accuracy (Geurts et al., 2006). It mainly consists of heavily 
randomizing both attribute and cut-point selection when splitting a tree node. It creates 
completely randomized trees with topologies that are independent of the learning sample's 
output values. The z score output is calculated using the average of the probabilities over all 
trees is defined as follows: 

            𝑍 = 𝑎𝑟𝑔𝑚𝑎𝑥
ଵ

்
∑ 𝑞௧(𝑦/𝑣)்

௧ୀଵ   (4) 

where T denotes the total number of trees, qt(y|x) is the conditional probability of class y given 
a vector v of a set sample. ERT employes a higher degree of randomization by splitting nodes 
based on a randomly selected subset of features and threshold values. This can further reduce 
the variance of the model and improve performance. To avoid overfitting, the method also 
includes a number of regularization procedures, such as restricting the maximum depth of the 
trees. 

3.5. Extreme Gradient Boosting 

Extreme Gradient Boosting (XGBoost) models have recently brought a lot of interest to in 
bankruptcy prediction and credit scoring field (Jones, 2017; Fontecha et al., 2021). XGBoost is 
more suitable for high dimensional, nonlinear analysis, which arguably better reflects the real-
world context of corporate bankruptcy. The gradient boosting approach, in contrast to more 
traditional methods such as logit, is not sensitive to the presence of outliers and 
multicollinearity.  The z score output is expressed as follow: 

                    𝑍 = ∑ 𝑓௝
௄
௝ୀଵ (𝑥௜)         (5) 

where xi are the explanatory factors, and fj(xi) is the function that determines the output of each 
tree. As compared to other machine learning algorithms, XGBoost excels in a number of ways. 
It's lightning fast, and it can process massive datasets with a plethora of features. Additionally, 
XGBoost provides several hyperparameters that can be tuned to optimize the model's 
performance. 

3.6. Deep neural networks 

Deep neural networks (DNNs) are a type of artificial neural network (ANN) that are 
characterized by having multiple hidden layers (Kraus et al., 2020). In such networks, there are 
more free parameters, and the network is more able to represent highly non-linear functions. 
The input layer receives input data, and the output layer produces the final output of the 
network. Kraus et al. (2020), compute a deep neural network with k layer functions as follows: 

      ∅(x)஽ேே = ∅ଵேே(∅ଵேே൫… ∅ଵேே(𝑋)൯)ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ
௞

           (6) 



where ∅1NN is a single-layer perceptron computed via a a linear combination embedded 
activation function. The input layer is referred to the first layer, the output layer is the final 
layer, and the remaining levels are called hidden layers. 

In classification tasks, the network learns to map input data to output labels via an iterative 
process of forward and backpropagation in which the network's weights are modified to 
minimize a loss function that assesses the difference between the predicted and true labels. By 
using a softmax activation in the output layer, classification tasks typically provide a discrete 
probability distribution across all possible classes (Russell, 2010 ; Gao and Wang, 2022). 

 

4. Data and variables 

Using the Diane database of the Bureau Van Dijk, we have constructed a sample of non-listed 
French firms composed of failed and healthy firms. We had to address the issue of unbalanced 
observations, where the majority class of healthy firms (n=354,152) significantly outweighs the 
minority class of failed firms (n=2,360), resulting in a low proportion of the latter class 
(0.00666). Additionally, the dataset contains many missing values, requiring data pre-
processing steps. To tackle this problem, we reduced the unbalanced dataset by eliminating 
missing values of healthy firms and selecting only 10% of the remaining healthy firm 
observations. Subsequently, we imputed missing values of failed firms. Following these data 
pre-processing steps, the data distribution was as follows: 2,360 firms were classified as failed, 
and 13,975 as healthy (yielding a proportion of the minority class of 0.1688). The sample 
remains imbalanced, although the level of imbalance has reduced significantly compared to the 
initial dataset. We have included only firms with available financial data for the last 3 years 
prior to the liquidation triggering date. Our sample covering the period 2010-2022 is based on 
two sets of variables. The first set is based on annual financial variables that are commonly used 
in the bankruptcy prediction literature dealing with the firm’s size (TA), indebtedness degree 
(Leverage), liquidity (CR, Cash and C/TA), operational performance (EBITDA, EBITDA/TA, 
WC and WC/TA), equity level (Equity and GR), sales (Sales, I/S and TS/TA). Additionally, we 
have also added Age as a proxy of firm’s experience. 

The second set relates to variables capturing the climate change effects at global and local 
scales. First, we address the global environmental degradation using the Climate Altering Land 
Cover Index (CALCI), the Climate Risk Index (CRI), Vulnerability Index (VUL) and Annual 
Surface Temperature Change (ASTC). Second, we have relied on the database of Meteo France 
to build four variables measuring the annual weather conditions at French county level, namely 
temperature (TEMP), humidity (HUM), daily precipitation (DP) and wind speed (WS). The 
table 1 provides detailed definitions of those variables. 

Table 2 shows a summary of the most important descriptive statistics of failed and healthy 
firms. Some of the key insights from the table include that failed firms have a significantly 
higher leverage than healthy firms, with a mean of 2799.93. The equity of failed firms also has 
a smaller mean value of 242.93 compared to the healthy firms with a mean value of 8672.16. 
The mean value of sales for failed firms is 3654.70, which is much lower than the healthy firms 
with a mean value of 25426.48. Healthy firms have significantly higher total assets (TA) than 
failed firms, with a mean value of 24577.24. In terms of the environmental variables, failed 
firms tend to have a slightly higher Climate Risk Index (CRI) with a mean value of 45.61 



compared to healthy firms with a mean value of 45.72. There are no major differences between 
the healthy and failed firms for the remaining climate change variables. 

As a precautionary measure, we ensure there was not a severe correlational problem among the 
different predictors and the response variable. Given the size of the dots and the absence of an 
intense color, it indicates the nonexistence of this potential problem (see correlogram plot in 
figure 1). A correlogram is a graph that illustrates the correlation matrix, representing each 
correlation coefficient with a dot color and size according to its value. Nevertheless, it suggests 
that Liquidation (failed firms) has a weak negative correlation with TA, CR, Cash, and EBITDA, 
meaning that an increase in these variables is associated with a decrease in the likelihood of 
liquidation. The correlogram also shows very weak correlations between Liquidation and 
environmental variables. 

 

(Insert Table 1 here) 

(Insert Table 2 here) 

(Insert Figure 1) 

 

5. Empirical results 

5.1. Prediction performance using climate changes risk variables 

This research analyzes whether climate change factors give substantial information that may be 
used to forecast the failure of a company, as well as the impact that CCR variables play in 
determining the risk that a company would collapse. So, we evaluate our proposed model, 
which incorporates CCR factors, against the outcomes of the conventional business failure 
model. We created two models: one that depends simply on financial ratios (Model A) and 
another that uses CCR variables in conjunction with financial data (Model B). These models 
were applied to the six different classifiers overviewed in section 4, namely the LR, GBM, 
DNN, RF, ETR, and XGBoost. We used cross-validated trials to carry out parameter 
optimization for the six techniques. Additionally, all models were fitted in R (R Core Team, 
2022) version 4.1.3, and for model interpretability, we used DALEX package version 2.4.0 
(Biecek et al., 2022). 

To evaluate the effectiveness of the models, we used three evaluation metrics commonly 
applied in the literature (Du Jardin, 2015): Accuracy (ACC), area under the ROC curve (AUC), 
and F-score (F). Table 3 presents the correct classification rates. The results indicate that CCR 
variables can predict corporate failure and provide valuable information about a firm's financial 
condition. 

(Insert Table 3 here) 

Table 3 compares the accuracy of several models in forecasting corporate failure, using Model 
A (financial ratios) and Model B (financial ratios and CCR variables). The table shows the 
accuracy percentages for each model, as well as differences in percentage points between Model 
B and Model A. In each of the models, except for DNN, Model B demonstrated superior 
performance to Model A. XGBoost achieved the highest accuracy percentages for both Model 
A (90.35%) and Model B (94.76%), representing an increase in accuracy of 4.41 percentage 
points from Model A to Model B. GBM exhibited a smaller increase in accuracy of 0.63 



percentage points, while RF and ETR experienced only marginal improvements in accuracy. 
LR demonstrated a very slight increase in accuracy of 0.58 percentage points. These results 
highlight the superior predictive capability of Model B, particularly when employing the 
XGBoost algorithm, and demonstrate the incremental gains in accuracy that can be obtained 
using additional variables. The model has only misclassified 5.24% of observations. This result 
corroborates the findings from previous bankruptcy studies that the gradient boosting model 
reports higher accurate performance (e.g, Jones, 2017).  
 

 (Insert Table 4 here) 

To get an insight about the added value of CCR variables, we calculated the difference between 
the accurate classification rates achieved with XGboost-based CCR variables (XGboost-CCR) 
and the rates achieved with all other models. We first evaluated the differences by modeling 
method, then by type of model (A and B), in addition to these computations, we supplemented 
our investigation with a two-sided test for differences between proportions to determine which 
of the changes were statistically significant. Results are shown in Table 4. In this table, Panel 
A indicates the magnitude of the differences rates while Panel B the p-values of a two-sided 
test for differences. These panels demonstrate that XGBoost-CCR are considerably higher than 
those estimated with any other model (p-value 0.0001), with differences ranging from 3.94 
percentage points all the way up to 14.78 percentage points. 
 
The findings suggest that variables related to CCR can predict corporate failure, and the 
decisions made by firms regarding CCR offer crucial insights into their financial health. It is 
not entirely surprising to discover this connection, as existing research has already established 
a link between firm performance and climate risk (Ozkan et al., 2022; Pankratz et al., 2023). 
This could clarify why such specific information is useful in differentiating between failed and 
non-failed firms.  
 
4.2. Additional analysis 
 
We further enhanced the prior findings by incorporating an additional performance metric, the 
area under the receiver operating characteristic curve (AUC). This measurement offers a 
comprehensive evaluation of model accuracy that is entirely unaffected by the distribution of 
observations across different classes (du Jardin, 2021) . The area under the ROC curve can be 
used to judge a model overall performance without assuming a relative cost structure (Mai et 
al., 2019).  

(Insert Table 5 here) 
 

Table 5 presents the AUC values for two different models (Model A and Model B) across 
various types of algorithms, as well as the percentage point difference between Model B and 
Model A. XGBoost-based CCR variables outperforms Model A with an AUC of 0.969 
compared to 0.907, representing an increase in accuracy of 4.41 percentage points from Model 
A to Model B. For GBM, Model B also surpasses Model A with an AUC of 0.923 versus 0.908. 
The difference between the two models is a 1.5 percentage point increase in favor of Model B. 
Conversely, the DNN algorithm shows a higher AUC for Model A (0.816) than Model B 
(0.768). The RF algorithm exhibits a marginal difference in performance between Model A 
(0.899) and Model B (0.903). Similar to RF, the LR algorithm shows a slight increase in AUC 
for Model B (0.821) compared to Model A (0.818). Finally, the ERT algorithm presents a higher 
AUC for Model B (0.911) compared to Model A (0.904). Overall, the results of Model B 
perform better than Model A that is based on the accounting ratios only.  



 
(Insert Table 6 here) 

 
To deepen the analysis, we analyzed the differences between the outcomes determined with 
XGBoost-based CCR variables and those predicted with the other algorithms. These are shown 
in Panel A of Table 6. Panel A of this table is supplemented by Panel B, which contains the p-
values of a test for differences between proportions. This test was performed to evaluate the 
statistical significance of the differences that were described in Panel A. These panels 
demonstrate that XGBoost-CCR consistently outperforms single all model results; the 
differences vary between 4.6 and 15.3 percentage points, and each difference is statistically 
significant at a very low level (less than 0.1%).  
 
4.3. Model explainability and evaluation of explainability 
 
Explainable Artificial Intelligence (XAI) is a subfield of artificial intelligence (AI) that focuses 
on creating machine learning models that can provide human-understandable explanations for 
their predictions and decisions (Chakraborty et al., 2021). The primary goal of XAI is to 
enhance the transparency, trustworthiness, and interpretability of AI systems. The main 
objective of XAI is to make artificial intelligence systems more open, reliable, and easy to 
understand.  
 
In this research, we employed the SHAP (SHapley Additive exPlanations) model by (Lundberg 
et al., 2020) to analyze the predictions of the XGBoost models. The SHAP "global 
interpretability" analysis shown in Figure 2 reveals the relative order of importance of 
accounting and CCR variables (Model B), but it also provides the well-informed conscious 
predictions made by the models. The variables are ranked in the order of their normalized SHAP 
value. It can be seen from figure 2 that 20 of the 23 predictor variables have nonzero SHAP 
value. This means that all 20 variables contributed to out-of-sample predictive power. As can 
be seen by figure 2, a several range of bankruptcy predictors dominate the analysis, including 
the accounting and CCR dimensions of corporate failure. The predictor factors that are featured 
most prominently in the analysis include the following: (1) a number of accounting variables 
and ratios including equity, sales, total assets, EBITDA to total assets, leverage, EBITDA, age, 
interest to sales, working capital, total sales to total assets and cash. This findings are in line 
with previous studies on corporate failure prediction (e.g, (Kumar and Ravi, 2007) ; Jones, 
2017); (2) a range of climate change risks variables including climate altering land cover, 
vulnerability, wind speed, climate risk index, humidity and temperature.  

(Please Insert Figure 2 here) 

Figure 2 indicates that the strongest predictor overall is equity ratio. The second strongest 
variable is the Climate Altering Land Cover Index. Higher and lower feature values are 
represented by red and blue dots, respectively. Higher values of this feature result in higher 
SHAP values, which correspond to a higher probability that a failure has occurred. Severe 
changes in the share of climate altering French land cover include shifts in temperature and 
precipitation, as well as a rise in the frequency of severe weather events.  Such changes might 
impact the stability of the systems or the likelihood of failures in infrastructure and resources. 
Those results provide some support to the argument of Fuss (2016) and Campiglio et al. (2022) 
arguing that climate change events can damage the value of financial assets leading to 
operational disruptions.  
 



The next strongest variable is the Vulnerability Index that is a metric determining how 
susceptible a nation is to the unfavorable consequences of climate change. This index 
determines a country's total vulnerability by considering food, water, health, ecosystem service, 
human habitat, and infrastructure. Higher values of vulnerability correspond to a higher 
probability of corporate failure. Firms operating in an environment more sensitive to the global 
warming effects may face interruptions to their supply chains, manufacturing facilities, or 
distribution networks because of severe weather events such as floods, storms, or droughts. 
These operational interruptions might result in higher expenses, lower production, or even 
temporary or permanent firm closures. Overall, the findings on VUL are in line with Huang et 
al. (2018)  that pointed out that the fixed assets can be physically damaged by extreme weather.  
 
Other high impacting CCR variables include climate risk index (CRI). Higher values of CRI 
correspond to a higher chance of failure occurrence. The CRI serves as an indicator of the 
vulnerability of a region or system to climate change risks, such as extreme weather events, 
rising sea levels, and shifts in precipitation patterns. Firms located in areas with high CRI values 
are exposed to a greater risk of disruptions to their operations, supply chains and infrastructure. 
This result is not completely surprising; available literature has documented that climate risk 
reduces firm performance (e.g, Huang et al., 2018; Ozkan et al., 2022). Other variables also 
appear to with nonzero importance, such us HUM and TEM. For example, lower values of TEM 
correspond to a higher chance of corporate failure occurrence, suggesting that cold can 
negatively affect the efficiency of the productivity and generating significant economic losses 
for the manufacturing firms (Cai et al., 2018).  
 

(Insert Figure 3 here) 
 
In Fig. 3, we assess the outcome of our analysis for a particular firm predicted as failed. Using 
the SHAP force plot, we can easily illustrate why each company in the dataset is likely to go 
bankrupt. We randomly select a failed company to determine which financial and CCR 
variables (Model B) play an important role in the prediction of the XGBoost model. As shown 
in Fig. 3, VUL (VUL=0.313), EBIDTA divided by TA (EBIDTA_TA=-0.216), and CRI 
(CRI=27.83) are the three variables that have the greatest impact on the firm’s outcome. This 
confirms once more that the CCR variables can have a bankruptcy prediction power.  
 
4.4. Further evaluation 

In this section, we will enhance our initial analysis along the following lines. Table 7 presents 
the F-scores of Model A and B. The F-score is a performance indicator that combines accuracy 
and recall, making it valuable for assessing classification models, especially those with 
imbalanced datasets (Goutte and Gaussier, 2005). The results indicate that Model B performs 
significantly better with XGBoost, slightly better with GBM and XRT, almost the same with 
logistic models, and worse with deep learning and Random Forest models. Considering the F-
score, XGBoost based CCR seems to be the most effective option among the all models. 

(Insert Table 7 here) 

(Insert Table 8 here) 

To conduct a more thorough investigation, we compared results predicted by various 
algorithms to those derived using XGBoost-based CCR variables. Table 8 demonstrates that 
the XGBoost-CCR model, which incorporates climate change risk variables, is more effective 



at classification tasks than the other models tested, whether based solely on financial ratios 
(Model A) or a combination of financial ratios and climate change risk variables (Model B). 

(Insert Figure 4 here) 

To deepen our analysis, we used a variable importance measure by Friedman, (2001). In Fig. 
4, we present variable importance measures for the 10 most important variables. We can see 
that vulnerability (VUL), equity, leverage and climate altering land cover (CALCI) have the 
most impact on corporate failure than other features. The explanation of variables importance 
is broadly in accordance with previous findings confirming the effectiveness of using climate 
change variables in predicting corporate failure and the impact of climate change in determining 
the risk of a company collapsing. 

 

5. Conclusion and implications 

In this paper, we have examined how climate change risk affects corporate failure. Our analysis 
confirms that CCR is associated with firm survival and improves model prediction 
performance. Incorporating relevant nonfinancial variables into company failure prediction 
models tends to generate a more accurate forecast. In this regard, our study created two models, 
one using financial ratios and another using climate change variables along with financial data, 
and applied them to six different classifiers. The results indicated that Model B, which included 
climate change variables, demonstrated superior performance to Model A. We also found that 
variables related to climate change can predict corporate failure, and decisions made by firms 
regarding climate change offer crucial insights into their financial health. It appears that the 
best model was fitted using the XGBoost algorithm, and it incorporated climate change 
variables in addition to financial ratios to improve its predictive power. This suggests that the 
model was able to leverage the relationships between financial performance and climate change 
factors to better predict firm’s outcome that is either survival or liquidation. 
 
Our focus on bankruptcy prediction and climate change risk allows us to provide novel insights 
into the role of climate change on firm’s liquidation. These outcomes contribute to the ongoing 
discussion in the academic and policy communities about the economic effects of climate 
change risks that could have substantial implications for the stability of the financial system. 
First, although previous research has investigated the impact of climate hazards on firm 
performance (e.g, Ozkan et al., 2022 ; Pankratz et al., 2023), to the best of our knowledge, this 
is the first attempt that directly considers the relationship between climate risk and corporate 
failure. Moreover, our study delivers novel research perspectives about the capacity of climate 
change risks–based variables to improve bankruptcy prediction models. These results provide 
evidence of improvements to predicting models that integrate information on climate change as 
well as financial factors. This finding is interesting in light of the channels through which 
extreme weather conditions relate to insolvency risk. Second, our findings add to the continuing 
debate in the academic and policy communities concerning the economic consequences of 
climate change concerns and the advantages of utilizing XAI approaches in modeling high-
dimensional and nonlinear manufacturing data (Senoner et al., 2022). As pointed by Bauer et 
al. (2023) from a cognitive perspective, explanations generally serve to enhance people's 
understanding, improve reasoning, and facilitate learning. As a result, explanations can 
facilitate the learning of machine knowledge, enabling users to access new insights 
autonomously derived from Big Data by AI systems and previously overlooked by domain 
experts (Teodorescu et al., 2021). 



 
From a practical perspective, the findings of our analysis are useful to financial institutions, 
banks, and investors, for evaluating the expected costs of climate change risks. First, the use of 
XAI based CCR variables in bankruptcy prediction models can help identify specific climate 
change risk factors that contribute to a higher likelihood of insolvency. This information can be 
valuable for firms, as it enables them to focus on targeted adaptation and mitigation strategies 
to address the most critical climate-related risks. In turn, this can help improve firms' resilience 
to climate change and reduce the probability of liquidation. Second, banks and lending 
institutions should address climate change issues in order to price more effectively the risks 
they are taking on. Understanding the specific climate-related causes driving insolvency risk 
allows regulators to target their actions to address the most pressing challenges, ultimately 
improving the financial system's overall stability. Overall, by incorporating XAI based CCR 
approaches into bankruptcy prediction models, we may get a better understanding of the 
intricate linkages between climate change threats, financial considerations, and corporate 
insolvency. By making these models more interpretable and transparent, stakeholders such as 
regulators, financial institutions, and investors would be able to better understand and trust the 
models' forecasts, resulting in more informed decision-making and risk management. 
 

Our study has some limitations, but it's no different than any other research out there. We think 
these constraints provide opportunities for further study, especially considering the growing 
literature of climate change concerns. First, our study primarily focuses on the impact of 
accounting ratios and climate change risk on corporate failure, leaving other non-financial 
factors and their potential effects on bankruptcy prediction unexplored. Future research could 
incorporate a wider range of non-financial variables to better understand their influence not 
only on corporate survival, but also on the likelihood of firm’s restructuring. Second, our 
findings may be limited to the French context. Future studies could investigate different 
countries, regions and industries. Third, Capasso et al. (2020) found that rising temperatures 
could disrupt financial markets and the banking system, as evidenced by firms' creditworthiness 
being affected by climate risks. In a similar vein, Chava (2014) demonstrated that businesses 
that have various environmental problems must pay more for bank loans. Therefore, the 
bankruptcy relevance of CCR should also be addressed to determine the risk failure or the 
financial degradation of banks. 
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Table 1. Variables definition  
Financial variables  
TA Total assets 
Leverage Ratio between firm’s total debt and TA  
Current Ratio Ratio between current assets and current liabilities 
Cash Amount of firm’s cash 
C/TA Ratio between Cash and TA 
EBITDA Earnings before interest, taxes, depreciation, and 

amortization 
EBITDA/TA Ratio between EBITDA and TA 
WC Working capital 
WC/TA Ratio between WC and TA 
Equity Total equity value 
GR Ratio between total debt and Equity 
Sales Sales 
I/S Ratio between interests and sales 
TS/TA Ratio between Sales and TA 
Age Firm’s age in years 
Climate change variables  
CALCI Climate Altering Land Cover Index (CALCI) assesses the 

changes in the share of climate altering land cover as 
compared to the base year, 2015. Source: International 
Monetary Fund: https://climatedata.imf.org/ 

CRI Global Climate Risk Index captures to what extent 
countries have been affected by impacts of weather-related 
loss events (storms, floods, heat waves etc.). Source: 
Eckstein et al. (2021), Greenwatch database: 
 https://www.germanwatch.org/en/cri.  

VUL Vulnerability index measures a country’s sensitivity to the 
adverse effects of climate change by relying on six 
dimensions, namely food, water, health, ecosystem 
service, human habitat, and infrastructure.  
Source: University of Notre Dame. 
https://gain.nd.edu/our-work/country-index/ 

ASTC Annual mean surface temperature change estimated with 
respect to a baseline climatology. Source: International 
Monetary Fund: https://climatedata.imf.org/ 

TEM Average temperature of the county in Celsius  
HUM Humidity ratio measured as the weight of water vapor per 

unit weight of dry air 
DP Amount of daily precipitation in mm that has accumulated 

within the last 24 hours 
WS Average wind speed for the last 10 minutes in m/s 
Notes: The observations of the financial variables were gathered from the Diane database 
of Bureau Van Dijk while the local weather variables (TEM, HUM, DP and WS) from 
Meteo France. 



 

Table 2. Descriptive statistics 

Failed firms 

Name mean sd median min max 

Leverage 2799.93 122084.14 16.09 -41021.20 5911290.00 

TA 2914.48 11797.50 927.01 0.10 285320.40 

CR 1.99 4.88 1.21 0.00 94.86 

Equity 242.93 4220.68 75.20 -48350.40 79743.89 

Cash 153.08 1165.25 30.55 -3403.98 28925.19 

EBITDA -75.48 743.55 0.00 -13726.31 13406.08 

WC 334.25 4484.31 30.31 -18847.01 167592.80 

GR 103.85 177.57 17.88 0.00 986.88 

Sales 3654.70 11724.27 1393.12 -15.56 308628.52 

I/S 762.70 4907.38 0.28 -3.52 77732.96 

Age 17.00 14.13 12.00 -1.00 70.00 

CRI 45.61 7.56 42.67 27.83 61.17 

CALCI 99.71 0.24 99.78 99.37 100.00 

VUL 0.31 0.00 0.31 0.31 0.31 

ASTC 1.66 0.45 1.69 0.33 2.41 

C/TA 0.08 0.16 0.04 -0.55 1.00 

EBITDA/TA -0.06 0.41 0.00 -13.22 1.27 

WC/TA -0.27 7.99 0.04 -375.99 0.96 

TS/TA 2.02 2.88 1.78 -0.16 92.96 

TEM 13.86 3.00 13.09 8.40 27.35 

HUM 73.74 5.67 75.02 57.80 85.75 

DP 2.01 0.81 1.89 0.47 9.71 

WS 3.82 1.00 3.65 1.56 7.31 

Healthy firms 

Name mean sd median min max 

Leverage 113.84 1435.93 29.47 -22037.29 122892.70 

TA 24577.24 208343.31 913.00 3.08 9575055.00 

CR 2.85 4.94 1.79 0.00 90.68 

Equity 8672.16 95617.48 353.06 -1006943.00 7577739.00 

Cash 1613.96 14099.85 114.13 -141107.30 702511.00 

EBITDA 1458.29 15697.83 72.00 -494220.70 677380.00 

WC 2496.94 39649.64 67.25 -922908.50 2611862.00 

GR 60.24 113.73 17.71 0.00 988.31 

Sales 25426.48 258235.37 1160.30 0.00 14795377.00 

I/S 6.22 358.22 0.18 -1.64 38200.00 

Age 20.02 15.45 16.00 -1.00 120.00 

CRI 45.72 7.33 42.67 37.33 61.17 

CALCI 99.72 0.24 99.78 99.37 100.00 

VUL 0.31 0.00 0.31 0.31 0.31 

ASTC 1.65 0.46 1.69 0.33 2.41 

C/TA 0.19 0.21 0.13 -1.66 1.00 

EBITDA/TA 0.11 0.21 0.09 -4.47 15.03 



WC/TA 0.10 0.34 0.10 -13.18 1.70 

TS/TA 2.03 1.90 1.73 0.00 60.57 

TEM 13.87 3.17 13.05 7.77 27.83 

HUM 73.85 5.58 75.02 57.80 86.97 

DP 2.06 0.87 1.93 0.47 11.30 

WS 3.83 0.93 3.68 1.52 7.31 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. Model accuracy (%) and significant differences (%). 
 Model A Model B  Differences (% point): Model B-A 
XGBoost 90.35 94.76 4.41 
GBM 90.19 90.82 0.63 
DNN 83.29 79.98 -3.31 
RF 89.80 89.06 -0.74 
LR 84.94 85.52 0.58 
ETR 89.78 89.89 0.11 
Note: Results reported on cross-validation data (5-fold) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Differences between correct classification rates achieved with XGBoost-based CCR variables, 
and those achieved with other models. 
  Panel A : Differences (% 

point) 
Panel B: P-values of a test for 
differences 

 Methods Model A Model B Model A Model B 
XGBoost-CCR XGBoost 4.41*** - 0.000 - 
 GBM 4.57*** 3.94*** 0.000 0.000 
 DNN 11.47*** 14.78*** 0.000 0.000 
 RF 4.96*** 5.7*** 0.000 0.000 
 LR 9.82*** 9.24*** 0.000 0.000 
 ETR 4.98*** 4.87*** 0.000 0.000 
Notes: Model A is constructed solely on financial ratios, Model B is constructed on financial ratios and CCR.  XGBoost: 
Extreme Gradient Boosting, DNN :  deep neural network, RF: Random Forest, LR : Logistic regression.  Results reported 
on cross-validation data (5-fold) 
 



 

 

 

 

 

Table 5. AUC (Area under the ROC curve) by type of model 
 Model A Model B  Differences (% point): Model B-A 
    
XGBoost 0.907 0.969 6 
GBM 0.908 0.923 1.5 
DNN 0.816 0.768 -4.8 
RF 0.899 0.903 0.4 
LR 0.818 0.821 0.3 
ERT 0.904 0.911 0.7 
Note: Note: Results reported on cross-validation data (5-fold) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 
 

 

 

 

 

 

 

 

 

Table 6. Differences between Area under the ROC curve (AUC) estimated by the XGBoost-CCR, and 
those achieved with other models. 
  Panel A : Differences (% 

point) 
Panel B: P-values of a test for 
differences 

 Methods Model A Model B Model A Model B 
XGBoost-CCR XGBoost 6*** - 0.000 - 
 GBM 6.1*** 4.6*** 0.000 0.000 
 DNN 15.3*** 20.1*** 0.000 0.000 
 RF 7*** 6.6*** 0.000 0.000 
 LR 15.1*** 14.8*** 0.000 0.000 
 ETR 6.5*** 5.8*** 0.000 0.000 
Notes: Model A is constructed solely on financial ratios, Model B is constructed on financial ratios and 
climate change risk variables.  XGBoost: Extreme Gradient Boosting, GBM:Gradient Boosting 
Machine, DNN :  deep neural network, RF: Random Forest, LR : Logistic regression  



 

Fig. 1. Correlogram plot of all predictors 



Fig .2. Global interpretation plots of the XGBoost.  

 

 

 

 

 

 

 



 
Fig. 3. SHAP contribution for an observation with a high predicted probability of failure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 7. F-score by type of model  
 Model A Model B  Differences (% point): 

Model B-A 
XGBoost 0.656 0.809 15.3 
GBM 0.657 0.684 2.7 
Deep learning 0.492 0.432 -6 
Random Forest 
(DRF) 

0.644 0.640 -0.4 

Logistic model 0.497 0.496 -0.1 
Extremely Randomized 
Trees (XRT) 

0.651 0.662 1.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8. Differences between F-score estimated by the XGBoost-CCR, and those achieved with other 
models. 
  Panel A : Differences (% 

point) 
Panel B: P-values of a test for 
differences 

 Methods Model A Model B Model A Model B 
XGBoost-CCR XGBoost 15.3*** - 0.000 - 
 GBM 15.2*** 12.5*** 0.000 0.000 
 DNN 31.7*** 37.7*** 0.000 0.000 
 RF 16.5*** 16.9*** 0.000 0.000 
 LR 31.2*** 31.3*** 0.000 0.000 
 ETR 15.8*** 14.7*** 0.000 0.000 
Notes: Model A is constructed solely on financial ratios,  Model B is constructed on financial ratios 
and climate change risk variables. XGBoost-CCR:  Extreme Gradient Boosting based climate change 
risk XGBoost: Extreme Gradient Boosting, GBM:Gradient Boosting Machine, DNN :  deep neural 
network, RF: Random Forest, LR : Logistic regression  



 
Fig. 4. Variable importance 

 

 

 

 

 

 

 

 

 

 


